Título Combining Computational Fluid Dynamics and Dimensional Analysis in the Design of Oil Skimmer Tanks

Tipo de Producto Ponencia (texto completo)

Autores Larreteguy, Axel; Barceló, Francisco y Caron, Pablo

Código del Proyecto y Título del Proyecto

P15T03 - Modelos Multicomponente para el Análisis, Optimización y Diseño de equipos y Procesos Industriales: Separadores de Fases

Responsable del Proyecto

Larreteguy, Axel

Línea

Fluidodinámica Computacional (CFD)

Área Temática

Modelado y Simulación Computacional (MYS)

Fecha

Junio 2016

Problem	CFD	DA	Results	Conclusions
_				
C	ombining Con	nutational	-luid Dynamics a	and
C	ourbining con	iputational i	iula Dynamics c	ind
D.	· • • •	1 1 1 I F		
Dim	iensional Anal	vsis in the L	esign of Uil Skir	mmer
		J	0	
		Tanka		
		Tanks		

Axel Larreteguy, Francisco Barceló, Pablo Caron

Instituto de Tecnología - Universidad Argentina de la Empresa

ECCOMAS, 5-10 June 2016, Crete Island, Greece

	CFD	DA	Conclusions
Table of	Contents		UADE

Table of Contents

- Problem.
- Computational Fluid Dynamics.
- Dimensional Analisis.
- Simulation and results.
- Conclusions.

Problem	CFD	DA	Results	Conclusions
●000	000000	000000	00000000000	00
Problem				UADE 🛞

Oil treatment plant:

Our goal: evaluate *efficacy* of a skimmer (percent of oil removed)

Larreteguy - Barceló - Caron

CFD and DA for skimmer design

Problem ○●○○	CFD 000000	DA 000000	Conclusions
Problem			UADE 🛞

Skimmer tank

- Big gravity separators for cleaning water.
- Recovered oil is skimmed from the surface.
- Designed for target oil droplet radius r_d and flow rate Q
- Characteristic times:
 - residence time

$$t_r = \frac{V}{Q}$$
 (V: tank volume)

• droplet rising time

 $t_d = \frac{H}{V_0}$ (*H*: tank height, V_0 : rising velocity of a droplet of oil)

Problem oo●o	CFD 000000	DA 000000	Conclusions
Problem			UADE

Skimmer tank: standard design

Larreteguy - Barceló - Caron

Problem ○○○●	CFD 000000	DA 000000	Conclusions
Problem			UADE 🛞

Skimmer tank: typical steady state (red=oil, blue=water)

	CFD	DA	Conclusions
	00000		
Computa	tional fluid [Dynamics	UADE 🛞

- Mathematical model: Drift Flux
- Numerical model: Finite Volumes (OpenFOAM)
- Application: separationFoam
- Postprocessing: ParaView

	CFD	DA	Conclusions
	00000		
CFD: M	athematical n	nodel	UADE 🛞

- Drift Flux Model, Ishii & Hibiki (based on the Two Fluid Model, Ishii 1987).
- The (oil-water) mixture is a single pseudo-fluid.
- Two phases: 1-continuous (water) and 2-disperse (oil).
- Diferential Equations:
 - mixture continuity
 - 2 mixture momentum
 - 3 disperse phase transport
- Closure relation:
 - drift velocity model

	CFD	DA	Conclusions
	000000		
CED: Ma	athematical r	nodel	UADE

- Main variables:
 - α_2 : volumetric fraction of oil
 - **v**_m : center of mass (mixture) velocity
 - p_m : mixture pressure

•
$$\mathbf{v}_{2j} = \mathbf{v}_2 - \mathbf{j}$$
: "drift" velocity of oil

where

- $\mathbf{j} = \alpha_1 \mathbf{v}_1 + \alpha_2 \mathbf{v}_2$: center of volume velocity
- $\alpha_1 = 1 \alpha_2$: volumetric fraction of water

	CFD	DA	Conclusions
	000000		
CFD: Ma	athematical n	nodel	UADE 🛞

- Differential Equations:
 - mixture continuity

$$\frac{\partial \rho_m}{\partial t} + \nabla \cdot (\rho_m \mathbf{v}_m) = 0$$

2 mixture momentum

$$\frac{\partial \rho_m \mathbf{v}_m}{\partial t} + \nabla \cdot (\rho_m \mathbf{v}_m \mathbf{v}_m) = -\nabla p_m + \nabla \cdot (\tau + \tau^t) - \nabla \cdot \left[\frac{\alpha_2 \rho_1 \rho_2}{(1 - \alpha_2)\rho_m} \mathbf{v}_{2j} \mathbf{v}_{2j}\right] + \rho_m \mathbf{g}$$

disperse phase transport

$$\frac{\partial \alpha_2 \rho_2}{\partial t} + \nabla \cdot (\alpha_2 \rho_2 \mathbf{v}_m) = -\nabla \cdot \left(\frac{\alpha_2 \rho_1 \rho_2}{\rho_m} \mathbf{v}_{2j}\right)$$

Larreteguy - Barceló - Caron

	CFD ○000●0	DA 000000	Conclusions
CED· M	athematical n	nodel	UADE

- Closure relation:
 - drift velocity model (monodisperse)

$$\mathbf{v}_{2j} = \mathbf{V}_0(1 - \alpha_2)$$

where

• $\mathbf{V}_0 = \frac{2}{9} \frac{g(\rho_1 - \rho_2)r_d^2}{\mu_1}$ rising velocity of a droplet of oil • $(1 - \alpha_2)$: factor to model the hindering effect

	CFD 00000●	DA 000000	Conclusions
CED: Nu	merical mod	el	UADE 🛞

- Method: Finite Volumes
- Package: Suite OpenFOAM (www.openfoam.org)
- Application: separationFoam (Larreteguy, Barceló, Caron)
- Based on settlingFoam (Brennan, 2001)
- Features of separationFoam 3.1 (2016)
 - model for the mixture viscosity
 - ensures realistic (bounded) solutions for volume fractions
 - strict mass conservation
 - thermal effects (i.e.: FWKO with fire tubes)
 - pressure gradient driven drift (i.e.: rotating flow separators)

Problem	CFD	DA	Results	Conclusions
0000	000000	●00000	000000000000	
Dimensional	Analysis			UADE 🛞

DA

- Tool for reducing the set of *n* dimensional variables of a problem to a smaller set of *k* dimensionless ones.
- The dimensionless variables are referred to as π numbers.
- Theorem π of Buckingham:

$$x_n = \mathbf{f}(x_1, x_2, ..., x_{n-1}) \to \pi_k = \mathbf{f}'(\pi_1, ..., \pi_{k-1})$$

- Functions **f** and/or **f**' to be determined by theoretical analysis, experiments, or simulations.
- After aplying DA, less (much less) experiments/simulations are required.

	CFD 000000	DA ○●○○○○○	Conclusions
DA: exan	nple		UADE 🛞

Example:

Pressure gradient $\frac{dp}{dx}$ in pipe flow depends on 5 variables

 $\frac{dp}{dx} = \mathbf{f}(\{V\}, \{\rho, \mu\}, \{e, D\})$

where the subsets $\{V\}$, $\{\rho, \mu\}$ and $\{e, D\}$ refer to operational, physical, and geometric variables.

DA allows us to rewrite this using less dimensionless variables as

 $f = \mathbf{f}'(Re_D, \epsilon)$

where

• $f = -\frac{dp}{dx}D/(\frac{1}{2}\rho V^2)$ friction factor • $Re_D = \frac{\rho VD}{\mu}$ Reynolds number • $\epsilon = \frac{e}{D}$ relative rugosity

	CFD 000000	DA ○○●○○○	Conclusions
DA: mod	el of a skimr	ner	UADE 🛞

Skimmer

- Subset of geometric variables
 - Standard design: vertical cylinder with a pair of inclined dishes.
 - Inlet and outlet assumed centered.
 - Size and shape defined by subset $\mathbf{g} = \{H, R_i, R_d, R_o, h_i, h_o, h_l, d_h, \theta\}$
- Subset of physical parameters
 - Densities and viscosities of both fluids, and gravity acceleration
 p = {ρ₁, μ₁, ρ₂, μ₂, g}

	CFD	DA	Conclusions
		000000	
DA: mod	el of a skimr	ner	UADE

- Subset of operational conditions
 - Process assumed to depend on

$$\mathbf{o} = \{\alpha_i, Q, r_d\}$$

where

- α_i : inlet fraction of oil,
- Q: flow rate, and
- r_d: oil droplet radius.

We propose then the efficacy e to depend on 17 variables

 $e = f(\{\alpha_i, Q, r_d\}, \{\rho_1, \mu_1, \rho_2, \mu_2, g\}, \{H, R_i, R_d, R_o, ..., \theta\})$ or with the subset notation

$$e = \mathbf{f}(\mathbf{o}, \mathbf{p}, \mathbf{g})$$

 Problem
 CFD
 DA
 Results
 Conclusions

 0000
 000000
 00000000000
 00

DA: model of a skimmer

By applying DA we are able to reduce in 3 the number of variables. We propose the following:

• Reduce in 1 the subset \mathbf{g} by selecting H as reference

$$\mathbf{g}' = \{\frac{R_i}{H}, \frac{R_d}{H}, ..., \theta\}$$

Reduce in 2 the combination of the operational and physical subsets
 o and p by defining the dimensionless subset

$$\mathbf{q}' = \{\alpha_i, Ri, ReRi^{\frac{1}{2}}, t'_{\mathbf{d}}, \frac{\rho_1}{\rho_2}, \frac{\mu_1}{\mu_2}\}$$

where

• $Re = \frac{\rho_1 Q}{\mu_1 H}$: Reynolds number • $Ri = g \alpha_i (1 - \frac{\rho_2}{\rho_1}) \frac{H^5}{Q^2}$: Richardson number • $t'_d = \frac{t_d}{t_r} = \frac{9\mu_1 Q}{2g(\rho_1 - \rho_2)r_d^2 H^2}$: relative droplet rising time

 Note: ReRi^{1/2} selected instead of Re because the product does not depend on Q

$$ReRi^{rac{1}{2}} = rac{\sqrt{glpha_i
ho_1(
ho_1-
ho_2)}}{\mu_1}H^{rac{3}{2}}$$

Therefore, e depends on 14 dimensionless variables

$$e = \mathbf{f}'(\{\alpha_i, Ri, ReRi^{\frac{1}{2}}, t'_d, \frac{\rho_1}{\rho_2}, \frac{\mu_1}{\mu_2}\}, \{\frac{R_i}{H}, \frac{R_d}{H}, ..., \theta\})$$

or with the subset notation

 $e=\mathbf{f}'(\mathbf{q}',\mathbf{g}')$

	CFD 000000	DA 000000	Results ●00000000000	Conclusions
Results				UADE 🛞

Simulation stages

- Run a reference case.
- **2** Run cases to verify that e is constant for fixed \mathbf{q}' and \mathbf{g}' .
- Sun a sensitivity analisis to build the desired response surface function.

Problem 0000	CFD 000000		DA 000000	Results ○●0000000000	Conclusions 00
Results:	1) refere	nce			UADE 🛞
The shape	is defined b	y the sub	oset \mathbf{g}'		1
	Variable	Value			
	R_i/H	0.0250]		
	R_d/H	0.6250			
	R_o/H	0.7500		θ	
	h_i/H	0.0500		l	∽ , ⁺
	h_o/H	0.0500		ľ	Î. II
	h_l/H	0.3125		θ	dh
	d_h/H	0.1250			
	θ	0.0873		🗘 ho	

Height is set to H = 8m.

Ri

Ro

٨ hl

Rd

	CFD 000000	DA 000000	Results ○0●000000000	Conclusions
Results: 1)	reference			UADE

The physical properties subset \mathbf{p} is

Variable	Value
ρ_1	$1000 kg/m^{3}$
ρ_2	900 <i>kg/m</i> ³
μ_1	0.001 <i>Pas</i>
μ_2	0.020 <i>Pas</i>
g	9.81 <i>m</i> ² /s

and the operational subset **o**

Variable	Value
α_i	1000 <i>ppm</i>
Н	8 <i>m</i>
Q	$10000 m^3/d$
r _d	$75 \mu m$

	CFD 000000	DA 000000	Results ○00●00000000	Conclusions
Results: 1)	reference			UADE

Therefore, the subset \mathbf{q}' is

Variable	Value
α_i	$1e^{-3}$
t'_d	0.83
Ri	2400
ReRi ¹ 2	708712
$ ho_1/ ho_2$	10/9
μ_1/μ_2	1/20

Problem CF 0000 00	D 0000	DA 000000	Results ○○○○●○○○○○○	Conclusions 00
Results: 1) ref	erence			UADE
Simulation detail	S			

- mesh: structured, axisymmetric, 5104 cells, no layers
- runs: transients towards a "steady state", runTime=20t_r
- initial conditions: clean tank

Problem	CFD	DA	Results	Conclusions
0000	000000	000000	○○○○○○○○○○○	
Results: 1) reference			UADE

- "Steady state" solution:
 - Run time
 44 hs (20t_r)
 - Efficacy
 - e=83.7%

Problem	CFD	DA	Results	Conclusions
0000	000000	000000	○○○○○●○○○○○	
Results: 2)	verification	1		UADE

Results: 2) verification

As an example of verification consider 3 cases with different Q, H, r_d , μ_1 and μ_2 but same dimensionless subsets \mathbf{q}' and \mathbf{g}' .

CaseName	$Q[m^3/d]$	H[m]	$r_d[\mu m]$	$\mu_1[Pas]$	$\mu_2[Pas]$	runTime[hs]
halfQ	5000	6,06	57	0,000660	0,013195	38
reference	10000	8,00	75	0,001000	0,020000	44
doubleQ	20000	10,60	99	0,001516	0,030314	50

The three cases should result in the "same" efficacy.

	CFD 000000	DA 000000	Results ○○○○○○●○○○○	Conclusions
-				

Results: 2) verification

Oil fraction field and efficacy at t = 20tr. Verification OK $\sqrt{}$.

Larreteguy - Barceló - Caron

CFD and DA for skimmer design

	CFD 000000	DA 000000	Results ○○○○○○●○○○	Conclusions
Results:	3) sensitivitv	analysis		UADE

The task:

• Evaluate the efficacy e of a given design under variations in the Ri and t'_d numbers, that is

$$e=\mathbf{f}'(R_i,t_d')$$
,

while keeping the rest of the dimensionless numbers fixed.

- A given design means that the dimensionless subset g' is fixed.
- As for the remaining dimensionless numbers, we chose to fix
 - the size ot the tank (H),
 - the fluids $(\rho_1, \mu_1, \rho_2, \mu_2)$,
 - the inlet oil fraction (α_i) , and
 - the "planet" (g),

to the reference values, and vary

- the flow rate (Q), and
- the target droplet radius (r_d) .

Problem	CFD 000000	DA 000000	Results	Conclusions
	->			

Results: 3) sensitivity analysis

Cases: Ri and t'_d modified $\pm 50\%$ and $\pm 25\%$ from reference

CaseName	$Q[m^3/d]$	$r_d[\mu m]$	t'd	Ri	runTime[hs]
CtREF-RiREF	10000	75	0,84	2400	44
CtP50-RiREF	10000	61	1,25	2400	44
CtP25-RiREF	10000	67	1,04	2400	44
CtM25-RiREF	10000	86	0,63	2400	44
CtM50-RiREF	10000	106	0,42	2400	44
CtREF-RiP50	8200	68	0,84	3600	53
CtREF-RiP25	9000	71	0,84	3000	49
CtREF-RiM25	11500	80	0,84	1800	38
CtREF-RiM50	14000	89	0,84	1200	32
CtP50-RiP50	8200	56	1,25	3600	53
CtP25-RiP50	8200	61	1,04	3600	53
CtM25-RiP50	8200	79	0,63	3600	53
CtM50-RiP50	8200	96	0,42	3600	53
CtP50-RiP25	9000	58	1,25	3000	49
CtP25-RiP25	9000	64	1,04	3000	49
CtM25-RiP25	9000	81	0,63	3000	49
CtM50-RiP25	9000	100	0,43	3000	49
CtP50-RiM25	11500	66	1,25	1800	38
CtP25-RiM25	11500	72	1,04	1800	38
CtM25-RiM25	11500	92	0,63	1800	38
CtM50-RiM25	11500	113	0,42	1800	38
CtP50-RiM50	14000	73	1,25	1200	32
CtP25-RiM50	14000	80	1,04	1200	32
CtM25-RiM50	14000	102	0,63	1200	32
CtM50-RiM50	14000	125	0,42	1200	32

Larreteguy - Barceló - Caron

Time evolution of efficacy e(t') for selected cases, in %

ECCOMAS 2016 29 / 32

Larreteguy - Barceló - Caron

CFD and DA for skimmer design

Problem	CFD	DA	Results	Conclusions
0000	000000	000000	00000000000	●○
Conclusions				UADE 🛞

- CFD and DA were combined for analysing the behaviour and performance of skimmer tanks for oil-water separation.
- A set of dimensionless variables was proposed and showed to represent the separation process under study.
- As a practical example, a standard design of a skimmer was tested under certain simplifying assumptions.
- The technique may provide important information on the role that the variables play in the performance of the tank.

	CFD	DA	Conclusions
			00
Acknowle	edgments		UADE 🛞

The authors wish to thank

- Universidad Argentina de la Empresa (support under Grant P15T03)
- ECCOMAS organizers
- You, for your kind attention