PROYECTO FINAL DE BIOTECNOLOGÍA

ANÁLISIS DEL PAPEL DE LA BIODISPONIBILIDAD DE HIERRO Y DEL REGULADOR TRANSCRIPCIONAL *fur* EN LA PATOFISIOLOGÍA DE *Escherichia coli* O157:H7

Iannelli, Daniela Noemí – L.U.: 1.089.150

Licenciatura en Biotecnología

Tutor: Marques Da Silva, Wanderson, Instituto de Agrobiotecnología y Biología Molecular (IABIMO) - INTA/CONICET

Co-Tutor: Cataldi, Angel Adrian, Instituto de Agrobiotecnología y Biología Molecular (IABIMO) - INTA/CONICET

Co-Tutor: Vadillo, Martín Javier, Universidad Argentina de la Empresa (UADE)

Colaborador/es: Dr. Jinlong Bei, AGRO-Biological Gene Research Center, Guangdong Academy of Agricultural Sciences

2022

UADE

UNIVERSIDAD ARGENTINA DE LA EMPRESA FACULTAD DE INGENIERÍA Y CIENCIAS EXACTAS

TABLA DE CONTENIDO

INI	DICE DE H	FIGURAS					
INI	DICE DE 1	TABLAS					
AG	RADECIN	AIENTOS					
RE	SUMEN						
AB	STRACT.						
1.	INTRO	DUCCIÓN12					
1	.1.	Escherichia coli					
1	.2.	Е. СОЦ О157:Н7					
	1.2.1.	Reservorio y transmisión					
	1.2.2.	Síndrome Urémico Hemolítico (SUH) y datos epidemiológicos14					
	1.2.3.	Diferencias genómicas entre E. coli comensal y E. coli O157:H7 15					
	1.2.4.	Factores de virulencia de E. coli O157:H716					
	1.2.4.1.	Toxinas Shiga					
	1.2.4.3.	Plásmido pO157					
	1.2.4.4.	Adhesinas					
	1.2.5.	Etapas de la patogenecis					
	1.2.5.1.	Adherencia Inicial					
	1.2.5.2.	Translocación de señales y transducción de señales					
	1.2.5.3.	Adherencia íntima y producción de toxina Shiga					
1	.3.	LA IMPORTANCIA DEL HIERRO EN SISTEMAS BIOLÓGICOS					
	1.3.1.	Estrés nutricional generado por la biodisponibilidad de hierro					
	1.3.2.	Homeostasis y sistemas de adquisición de hierro en bacterias					
	1.3.3.	Ferric uptake regulator (fur) y mRNA					
	1.3.4.	El regulón Fur					
	1.3.5.	Fur en la virulencia y patogénesis de E. coli O157:H7 29					
2.	OBJET	IVOS					
2	2.1.	OBJETIVO GENERAL					
2	2.2.	OBJETIVOS ESPECÍFICOS					
3. N	IATERIA	LES Y MÉTODOS					
3	.1. CEPAS I	BACTERIANAS, PLÁSMIDOS Y CONDICIONES DE CULTIVO BACTERIANO					
3	.2.	DLIGONUCLEÓTIDOS O CEBADORES 32					

3.3.	GELES DE AGAROSA Y CORRIDAS ELECTROFORÉTICAS
3.4.	PREPARACIÓN DE E. COLI O157:H7 ELECTROCOMPETENTE
3.5.	PREPARACIÓN DE <i>E. COLI</i> DH5A QUIMICOMPETENTES
3.6.	GENERACIÓN DE UNA CEPA DE E. COLI O157:H7 MUTANTE PARA EL GEN FUR
3.6.1.	Generación del amplicón mutagénico
3.6.2.	Transformación de E. coli 0157:H7 mediante electroporación
3.6.3.	Verificación de la presencia del caset de cloranfenicol en la cepa E. coli O157:H7 Rafaela II. 37
3.7.	Complementación de la cepa mutante ΔFUR
3.7.1.	Amplificación de la secuencia de fur y su región promotora
3.7.2.	Clonado de fur más su región promotora en el plásmido pGEM-Teasy
3.7.2.1.	Ligación
3.7.2.2.	Trasformación de E. coli DH5α mediante shock térmico
3.7.2.3.	Verificación de la presencia del inserto Inter-fur en el vector pGEM-T easy
3.7.3.	Subclonación de inter-fur en el plásmido pLF 40
3.7.3.1.	Digestión enzimática del plásmido pGfurC y el vector pLF 40
3.7.3.2.	Ligación de fur más su región promotora en el plásmido pLF 40
3.7.3.3.	Trasformación de E. coli DH5a con el plásmido pLFfurC mediante shock térmico
3.7.3.4.	Verificación de presencia del inserto Inter-fur en el plásmido pLF41
3.7.3.5.	Transformación de la cepa E. coli O157:H7 Rafaela II ∆fur
3.7.3.6.	Verificación de la presencia del plásmido pLFfurC en la cepa E. coli O157:H7 Rafaela II ∆fur42
3.8.	Evaluación del perfil de crecimiento de las cepas tipo salvaje y mutante de E . $coli$
O157:H7 A	NTE DIFERENTES BIODISPONIBILIDADES DE HIERRO
3.9.	ANÁLISIS PROTEÓMICA DIFERENCIAL CUANTITATIVA BASADO EN TÁNDEM MASS TAG (TMT) 43
3.9.1.	Extracción de proteínas a partir del lisado bacteriano total
3.9.2.	Resolución electroforética en gel de poliacrilamida
3.9.3.	Digestión de proteínas
3.9.4.	Etiquetado TMT
3.9.5.	Separación de fase invertida de pH alto
3.9.6.	Análisis nano-HPLC-ms/ms
3.9.7.	Análisis de datos
3.10.	Ensayo de adhesión de las cepas tipo salvaje y mutante de <i>E. coli</i> O157:H7 a células
EPITELIALE	S INTESTINALES HCT-8
3.10.1.	Preparación de monocapas celulares de células HCT-8
3.10.2.	Ensayo de adhesión celular

	3.11.	Ensayo de supervivencia intracelular de las cepas tipo salvaje y mutante de E . c	OLI
	O157:H7 A	MACRÓFAGOS MURINOS RAW264.7	47
	3.11.1.	Preparación de monocapas celulares de células RAW264.7	47
	3.11.2.	Ensayo de infección	48
	3.12.	ENSAYO DE RESISTENCIA AL ESTRÉS ÁCIDO	49
	3.13.	ENSAYO DE MOTILIDADEN AGAR BLANDO	49
	3.14.	ANÁLISIS DE EXPRESIÓN GÉNICA	50
	3.14.1.	Extracción de RNA total de las cepas de E. coli O157:H7	50
	3.14.2.	Ensayo de retro-transcripción	51
	3.14.3.	PCR cuantitativa en tiempo real (RT-qPCR)	51
	3.15.	ANÁLISIS BIOINFORMÁTICO	52
4.	RESUL	TADOS Y DISCUSIÓN	53
	4.1.	PREDICCIÓN IN SILICO DEL REGULÓN FUR EN E. COLI O157:H7	53
	4.1.1.	Predicción de las secuencias fur-box en las regiones promotoras mediante PRODORIC	54
	4.1.2.	Anotación funcional	56
	4.1.3.	Predicción de islas genómicas y secuencias de fagos en el genoma de la cepa E. coli O157:H7	7
	Rafaela I	11	57
	4.2.	EVALUACIÓN DEL PERFIL DE CRECIMIENTO DE E. COLI O157:H7 EN DIFERENTES DISPONIBILIDAD	DES
	DE HIERRO		63
	4.3.	EVALUACIÓN DE LA DISPONIBILIDAD DE HIERRO EN LA EXPRESIÓN DE GENES RELACIONADOS A	LA
	PATOGÉNES	IS DE <i>E. COLI</i> O157:H7	64
	4.4.	GENERACIÓN DE LA CEPA MUTANTE <i>E. COLI</i> O157:H7 Δ <i>FUR</i>	66
	4.4.1.	Generación del amplicón para mutagénesis	66
	4.4.2.	Transformación de la cepa E. coli O157:H7 pKD46 con el amplicón para mutagénesis	67
	4.5.	Complementación de la cepa mutante ΔFUR	68
	4.5.1.	Generación del inserto inter-fur	68
	4.5.2.	Generación del plásmido pGfurC	70
	4.5.3.	Generación del plásmido pLFfurC y transformación de la cepa tipo mutante de E. coli O157: P	1 7
	∆fur		71
	4.6.	EVALUACIÓN DEL PERFIL DE CRECIMIENTO DE <i>E. COLI</i> O157:H7 Δ <i>fur,</i> Δ <i>fur/pFurC</i> y Δ <i>fur/</i> p	LF
	EN DIFEREN	TES BIODIPONIBILIDADES DE HIERRO	72
	4.7.	ANÁLISIS PROTEÓMICO COMPARATIVO CUANTITATIVO	73
	4.8.	EL GEN <i>FUR</i> CONTRIBUYE A LA ADHESIÓN DE <i>E. COLI</i> O157:H7 A CÉLULAS EPITELIALES	79
	4.9.	EL GEN <i>FUR</i> CONTRIBUYE A LA SUPERVIVENCIA DE <i>E. COLI</i> O157:H7 A LOS MACRÓFAGOS	81

B	IBLIOGRA	FÍA	153
	7.	ANEXO II	113
	6.	ANEXO I	. 91
	5.	Conclusiones	. 90
	4.12.	ANÁLISIS DE EXPRESIÓN GÉNICA QRT-PCR	. 88
	4.11.	EVALUACIÓN DEL ROL DE FUR EN LA MOTILIDAD DE E. COLI O157:H7	. 85
	4.10.	EVALUACIÓN DEL ROL DE FUR EN LA RESISTENCIA DE E. COLI O157:H7 AL ESTRÉS ÁCIDO	. 83

INDICE DE FIGURAS

FIGURA 29: EL GEN FUR ES ESTÁ INVOLUCRADO EN EL PROCESO DE ADHESIÓN DE E. COLI O157:H7 A CÉLUL	AS
INTESTINALES EPITELIALES	80
FIGURA 30: SUPERVIVENCIA DE LA E. COLI O157:H7 LUEGO LA INCUBACIÓN CON MACRÓFAGOS	82
FIGURA 31: SUPERVIVENCIA DE LA <i>E. COLI</i> O157:H7 AL ESTÉS ÁCIDO	84
FIGURA 32: LA AUSENCIA DEL GEN FUR REDUCE LA MOTILIDAD DE E. COLI O157:H7	86
FIGURA 33: ANÁLISIS DEL ROL DE FUR EN LA EXPRESIÓN GÉNICA DE STCE Y FLICMEDIANTE RT-QPCR. RTQ-PO	CR
DEL GEN STCEY FLICDE <i>E. COLI</i> O157:H7 RAFAELA II (SALVAJE), ΔFUR Y ΔFUR/PFURC EN MEDIO LB	89

INDICE DE TABLAS

TABLA 1: CASOS, TASAS Y DIAGNÓSTICO DE LABORATORIO PARA STEC. ARGENTINA. PERÍODO 2016-2020.
(MINISTERIO DE SALUD, 2021)
TABLA 2: CEPAS BACTERIANAS UTILIZADAS EN ESTE TRABAJO. 31
TABLA 3: VECTORES UTILIZADOS EN ESTE TRABAJO. 32
TABLA 4: OLIGONUCLEÓTIDOS UTILIZADOS EN ESTE TRABAJO
TABLA 5: PROGRAMA DE PCR PARA LA AMPLIFICACIÓN DEL CASET DE RESISTENCIA A CLORANFENICOL
TABLA 6: PROGRAMA DE PCR PARA LA VERIFICACIÓN DE LA PRESENCIA DEL CASET DE CLORANFENICOL
TABLA 7: FACTORES DE VIRULENCIA CON POSIBLES SECUENCIAS FUR-BOX. 55
TABLA 8: LOCALIZACIÓN DE GENES CON PREDICCIÓN POSITIVA PARA REGIONES FUR-BOX EXCLUSIVOS DE RAFAELA
II
TABLA 9. GENES DE E. COLI O157:H7 INVOLUCRADOS EN LA SUPERVIVENCIA AL ESTRÉS ÁCIDO
TABLA 10. GENES DE E. COLI O157:H7 INVOLUCRADOS EN LA REGULACIÓN, SÍNTESIS Y ENSAMBLADO FLAGELAR.
TABLA 11: PREDICCIÓN DE GENES DE E. COLI O157:H7 RAFAELA II CON SECUENCIAS FUR-BOX EN SU REGIÓN
PROMOTORA MEDIANTE PRODORIC
TABLA 12: ANALISIS DE EXPRESIÓN DIFERENCIAL. 113

Agradecimientos

La finalización del presente trabajo final para obtener el titulo de Licenciatura en Biotecnología no hubiese sido posible sin el apoyo de un gran grupo de personas que me alentaron a seguir adelante y que me enseñaron que los errores sirven para prender y crecer.

En primer lugar, quiero agradecerles a mis tutores, el Dr. Wanderson Marques Da Silva y el Dr. Angel Cataldi por darme la posibilidad de formar parte de su grupo de investigación sabiendo los horarios limitados que tenía para ir al laboratorio. Quiero agradecerles por todo el conocimiento que me brindaron y por acompañarme en mis primeros pasos como profesional presentando el trabajo realizado en seiminarios y congresos.

Gracias a mi familia, Claudio, Nancy, Kevin, Vera y Miriam por haberme soportado en noches enteras de estudio y estrés a lo largo de la carrera. A su vez, este trabajo no hubiese sido posible sin su aliento constante, durante los últimos dos años vivieron el día a día de mi proyecto final como si hubiesen estado en la mesada al lado mio. Gracias a mi abuela Beatriz por haberme enseñado a cuestionar mi entorno, que un tropezón no es caída y que no importa cuanto tardemos, lo importante es que llegemos. El apoyo incondicional de mi familia fue el gran impulso que se lleva el mérito de cada meta cumplida a lo largo de mi vida.

También quiero agradecerles a mis compañeros de la facultad, Micaela, Joquín, Carla, Luz, Micaela, Paula y Juan que con el tiempo se transformaron en amigos y compañeros de vida. Un camino en donde más de una vez aparecieron catástrofes climáticas ustedes lo llenaron de ambulancias y chalecos salva vidas. Estoy inmensamente agradecida por todo su apoyo desde el primer hasta el último día de universidad.

Por ultimo, quiero agradecerle a la Universidad Argentina de la Empresa y a todos los docentes de la carrera de Biotecnología por incentivarme a aprender y formarme como profesional.

Resumen

Esterichia coli enterohemorrágica (EHEC) O157:H7 es un patógeno zoonótico capaz de causar diarrea severa y síndrome urémico hemolítico (SUH) en humanos. Estudios han demostrado que la expresión de estos factores de virulencia y procesos involucrado en la patogénesis de E. coli O157:H7 está directamente relacionada a diferentes estímulos ambientales (temperatura, cationes, pH y osmolaridad) y nutricionales. Ferric uptake regulator (fur) es un regulador transcripcional bacteriano involucrado en la regulación de la adquisición y metabolismo del hierro. Además de eso, fur regula directa o indirectamente genes relacionados a diferentes procesos biológicos. Estudios han de mostrado que tanto Fur como el hierro juegan un rol importante en la fisiología y patogénesis de diferentes bacterias, con respecto a E. coli O157:H7 todavía hay poco conocimiento de la asociación del fur con su patogénesis. Por lo tanto, el presente trabajo tiene como objetivo caracterizar el regulón Fur en E. coli O157:H7 in silico y a nível proteómico, además de evaluar la relación de este regulador transcripcional con los procesos involucrados con la patofisiología de E. coli O157:H7. El análisis in silico permitió la predicción de 427 genes con secuencias fur-box en sus regiones promotoras. Luego se vio que 47 genes se encuentran ubicados en islas genómicas y/o secuencias de fagos que están insertadas en el genoma de la cepa E. coli O157:H7 Rafaela II. A partir del análisis proteómico comparativo cuantitativo realizado con la cepa mutante para el gen fur y con la cepa Rafaela II en diferentes disponibilidades de hierro, fue obervada una diferencia de abundacia de proteínas involucradas en procesos claves para la patogénesis de E. coli O157:H7 como la respuesta a estímulos generada por antibióticos y el mantenimiento de la localización bacteriana. Al evaluar el impacto de la mutación del gen fur en procesos asociados a la patofisiología de E. coli O157:H7, se vio que la mutación reduce la adhesión celular, motilidad y supervivencia en macrófagos de E. coli O157:H7. A su vez, con respecto al estrés ácido, la cepa Δfur mostró mayor resistencia al mismo en relación a la cepa salvaje. A raíz de los hechos descriptos, en este trabajo se demostró por primera vez que fur cumple un papel en la patofisiología de E. coli O157:H7.

Abstract

Enterohaemorrhagic Esterichia coli (EHEC) O157:H7 is a zoonotic pathogen capable of causing severe diarrhea and hemolytic uremic syndrome (HUS) in humans. Studies have shown that the expression of these virulence factors and processes involved in the pathogenesis of E. coli O157:H7 is directly related to different environmental (temperature, cations, pH and osmolarity) and nutritional stimuli. Ferric uptake regulator (fur) is a bacterial transcriptional factor involved in the regulation of iron acquisition and metabolism. Besides that, fur also regulates directly or indirectly genes related to different biological processes. Studies have shown that both Fur and iron play an important role in the physiology and pathogenesis of different bacteria, regarding E. coli O157:H7 there is still little knowledge of the association of fur with its pathogenesis. Therefore, the present work aims to characterize the Fur regulon in E. coli O157:H7 in silico and at a proteomic level, in addition to evaluate the relationship of this transcriptional factor with the processes involved in the pathophysiology of E. coli O157:H7. The in-silico analysis allowed the prediction of 427 genes with fur-box sequences in their promoter regions. Then it was found that 47 genes are located in genomic islands and/or phage sequences that are inserted into the genome of the E. coli O157:H7 Rafaela II strain. From the quantitative comparative proteomic analysis carried out with the mutant strain for the fur gene and with the Rafaela II strain in different iron availability, a difference in the abundance of proteins involved in key processes for the pathogenesis of E. coli O157:H7 was observed such as the response to stimuli generated by antibiotics and the maintenance of bacterial localization. When evaluating the impact of the *fur* gene mutation on processes associated with the pathophysiology of E. coli O157:H7, it was found that the mutation reduces cell adhesion, motility, and survival of E. coli O157:H7 in macrophages. Moreover, concerning to acid stress, the Δfur strain showed greater resistance to it in relation to the wild strain. As a result of the facts described, in this work it was demonstrated for the first time that fur plays a role in the pathophysiology of E. coli O157:H7.

1. Introducción

1.1. Escherichia coli

Escherichia coli es un bacilo Gram negativo perteneciente a la familia de las Enterobacterias que se encuentra normalmente en el intestino del ser humano y de otros animales de sangre caliente. Estas cepas pueden ser comensales, existiendo en un estado simbiótico brindando resistencia contra organismos patógenos, o ser patógenas y causar enfermedades intestinales y extraintestinales. Las cepas patógenas de *E. coli* pueden portar varios factores de virulencia involucrados en la patogenia de estas bacterias (Katouli *et al*, 2010). De acuerdo con el esquema de Kauffman modificado, *E. coli* se serotipifica sobre la base de sus perfiles de antígeno de superficie O (somático), H (flagelar) y K (capsular). Una combinación específica de antígenos O y H define el "serotipo" de un aislado (Kaper *et al*, 1998).

E. coli patogénica puede clasificarse en dos grupos principales basados en su sitio de colonización (**Figura 1**): (i) extraintestinales, las cuales son capaces de causar desde infecciones del tracto urinario, como *E. coli* uropatógenica (UPEC), hasta el sistema nervioso central tiendo como agente infeccioso *E. coli* asociado a meningitis neonatal (MNEC); e (ii) intestinales, que son responsables de diferentes cuadros de diarrea, como *E. coli* enteropatogénica (EPEC), *E. coli* enterohemorrágicoa (EHEC), *E. coli* enterotoxigénica (ETEC), *E. coli* enteroagregatia (EAEC), *E. coli* enteroinvasiva (EIEC) y *E. coli* de adherencia difusa (DAEC) (Croxen M. A. *et al*, 2010).

Nature Reviews | Microbiology

Figura 1: Sitios de colonización de E. coli patogénica(Croxen M. A., 2010)

1.2. E. coli O157:H7

E. coli enterohemorrágica (EHEC) es un patógeno zoonótico que pertenece al grupo de *E. coli* productores de toxina Shiga (STEC) capaz de causar diarrea severa y síndrome urémico hemolítico (SUH) en humanos. El serotipo O157:H7 es responsable de los cuadros más severos de la infección generada por este patógeno, siendo el agente etiológico de la colitis hemorrágica y el SUH. *E. coli* O157:H7 posee un genoma con aproximadamente 5,4 MB lo que muestra una gran cantidad de genes que contribuyen para su proceso patofisiológico. El proceso patogénico de *E. coli* O157:H7 es multifactorial y requieren la expresión coordinada de una red regulatoria de genes que son regulados en respuesta a diferentes estímulos ambientales encontrados por este enteropatógeno a lo largo de la infección (Lim *et al*, 2010).

1.2.1. Reservorio y transmisión

E. coli O157:H7 ha sido reportada en un gran número de especies animales de sangre caliente, principalmente rumiantes tales como vacas, ovejas, cabras y ciervos, entre otros, siendo portadores asintomáticos de la misma (Persad *et al*, 2014). Sin embargo, el ganado bovino es el principal reservorio por la colonización preferencial del epitelio mucoso hasta 5

cm proximal a la unión recto-anal del bovino (Naylor *et al*, 2003). La transmisión en humanos es por vía fecal-oral de manera directa por el consumo de alimentos de origen bovino, como carnes y lácteos; o de manera indirecta por el consumo de aguas y cultivos vegetales contaminados con materia fecal de bovinos infectados (Ferens *et al*, 2011) (**Figura 2**). Una vez que el humano consume un alimento infectado por la bacteria, la misma recorre el tracto digestivo hasta llegar a su sitio de colonización, la mucosa intestinal, en donde actúa como patógeno extracelular adheriendose a las células epiteliales del intestino grueso. Cabe destacar que dosis tan bajas como 10-100 células de *E. coli* O157:H7 son suficientes para provocar enfermedad en humanos, por lo que el control de los alimentos previo a su comercialización debe ser exhaustivo (Tuttle *et al*, 1999).

Figura 2: Vías de transmisión de EHEC al humano.

1.2.2. Síndrome Urémico Hemolítico (SUH) y datos epidemiológicos

El SUH es una patología caracterizada por la presentación de una seguidilla de síntomas que incluyen diarrea sanguinolenta, trombocitopenia (baja cantidad de plaquetas), anemia hemolítica microangiopática (anemia causada por daño a los glóbulos rojos) y disminución de la función renal, en ciertos casos con una disminución de la diuresis (oliguria) o incapacidad total para producir orina (anuria). La tasa de letalidad es alrededor del 3%; el 20-30% sufren formas persistentes de nefropatías o formas secuelares de insuficiencia renal y el 10 a 15% requieren trasplante renal (Rivero *et al*, 2004).

El SUH es considerado un problema de salud pública en varios países y en particular, la Argentina es el país de mayor incidencia de SUH en el mundo (Rivas *et al*, 2008). En nuestro país esta enfermedad es la segunda causa de insuficiencia renal en niños menores a cinco años. Datos epidemiológicos del año 2020 han demostrado que 77% de los casos reportados en la Argentina se concentraron en niños menores a 5 años con una incidencia acumulada 6,33 cada 100.000 niños. En el periodo 2016-2020 de 400 cepas STEC aisladas, el 58,75% corresponden al serotipo O157:H7, lo que muestra la presencia de cepas pertenecientes a este serotipo altamente virulento circulando en nuestro país (Tabla 1) (Ministerio de salud *et al*, 2021). **Tabla 1: Casos, tasas y diagnóstico de laboratorio para STEC. Argentina. Período 2016-2020. (Ministerio de salud, 2021)**

	Sistema Nacional de Vigilancia de la Salud						Laboratorio de Referencia Nacional						
	Casos SUH		Tasas x 100.000 hab.			Casos	Casos según criterio diagnóstico				N° cepas STEC aisladas		
Año	< 5 años	5 o más años	Total	< 5 años	5 o más años	Total	Casos estudiados	asociados a infección por STEC	Solo Stx en MF	Solo Antic. 0157 /0145 /0121	Solo PCR+ sin aislamiento	Aislamientos STEC+	
2016	293	72	365	7,80	0,18	0,84	294	185 (62,9%)	2	119	2	62	62
2017	305	96	401	8,14	0,23	0,91	325	231 (71,08%)	7	146	2	76	77
2018	266	84	350	7,12	0,20	0,79	312	224 (71,79%)	5	128	-	91	92
2019	272	71	343	7,30	0,17	0,76	325	228 (70,15%)	9	117	3	99	102
2020	235	70	305	6,33	0,16	0,67	267	194 (72,6%)	2	122	4	66	67
Totales	1371	393	1764	36.69	0,94	3,97	1523	1062 (69,73%)	25	632	11	394	400

1.2.3. Diferencias genómicas entre E. coli comensal y E. coli O157:H7

El genoma de *E. coli* O157:H7 fue secuenciado y comparado contra la cepa de *E. coli* comensal K-12 en donde se observó que su genoma tiene un total de 5,5 Mb siendo este 859 Kb más largo que K-12 y codifica para 5361 proteínas, 7 sets de rRNAs (16S, 23S y 5S RNAs), 102 tRNAs, 1 tmRNA y alrededor de 13 *small* RNAs. Del total de su genoma, 4,1 Mb se encuentran altamente conservadas conformando probablemente el *backbone* de *E. coli*, es decir las regiones que codifican para sus funciones fisiológicas básicas (Hayashi *et al*, 2001). Diversos análisis comparativos han revelado que en las 1,4 Mb que *E. coli* O157:H7 no comparte con K-12, se encuentran en 1.387 regiones de codificación (CDS) (26% del total de genes) distribuidos en 177 islas genómicas (islas-o) las cuales, junto al plásmido pO157,

participan en la patogenicidad de la bacteria proveyendo numerosos factores de virulencias. Entre estos 1.387 genes específicos de O157:H7, 69 genes (4,97 %) están asociados con la virulencia de *E. coli* O157:H7, de los cuales 31 genes (2,24 %) codifican factores de virulencia, 26 genes (1,87 %) codifican efectores y 12 genes (0,87 %) codifican proteínas reguladoras; 47 genes (3,39%) están asociados a otros procesos biológicos; la función de los 1.271 genes restantes (91,64 %) por el momento se desconoce (Jiang *et al*, 2021) (**Figura 3**). Interesantemente, aunque se han realizado varios estudios, todavía hay un grado de desconocimiento de la totalidad de los factores de virulencia ubicados en estas islas-O que contribuyen a la infección por *E. coli* O157:H7 y como los mismo son regulados.

1.2.4. Factores de virulencia de E. coli O157:H7 1.2.4.1. Toxinas Shiga

La toxina Shiga (Stx), también conocida como Verotoxina (VT), representa el atributo de virulencia más importante en STEC y EHEC, y es el factor que define al patotipo STEC. La

información genética para la producción de estas toxinas está contenida en el genoma de un fago lambdoide integrado al cromosoma de STEC, que replica junto con él en su estado lisogénico (Chan *et al*, 2016). Bajo ciertas condiciones de estrés celular que provocan la activación de la respuesta SOS, el fago es inducido hacia su ciclo lítico lo que desencadena la producción de las toxinas y la liberación de nuevos fagos a través de la lisis celular (Bergan *et al*, 2012).

Stx pertenece a la familia de proteínas AB_5 las cuales contienen la subunidad enzimática activa A y una subunidad no toxica B responsable de la unión a los receptores. La porción B se encuentra conformada por cinco subunidades idénticas de 7,7 kDa las cuales conforman un anillo pentamérico que rodea el poro central en donde se encuentra anclado el extremo Cterminal de la porción A. Cada una de las subunidades B reconoce tres sitios de unión del receptor globotriaosilceramidas (Gb3s) que se encuentran en las células de Paneth de la mucosa intestinal humana y en la superficie de las células epiteliales renales. Para que la porción A (31,2 kDa) tome su conformación activa y ejerza toxicidad, esta debe ser clivada por una furina en la subunidad enzimáticamente activa A1 (27,5 kDa) y la subunidad A2 (4,5 kDa). Luego el fragmento A1 es translocado al citosol de la célula diana ejerciendo su actividad citotóxica inhibiendo la síntesis proteica e induciendo apoptosis (Bergan *et al*, 2012).

1.2.4.2. Locus of Enterocyte Effacement (LEE)

El LEE es una gran isla de patogenicidad de 35 Kb que contiene 41 marcos de lectura abierta (ORF), organizada en 5 grandes operones: LEE1, LEE2, LEE3, LEE4, LEE5 y un operón bicistrónico de dos pequeños reguladores *grlA-grlR* (**Figura 4**). En ellos esta codificada la información para un Sistema de Secreción de Tipo III (SST3) y algunas de las moléculas efectoras que son traslocadas hacia el interior de las células epiteliales por este sistema (Slater *et al*, 2018).

Figura 4: Organización estructural del locus de borramiento de enterocitos (LEE) (Slateret al, 2018).

Las proteínas estructurales del SST3 reciben sus nombres según la sigla en inglés "*E. coli Secreted Protein*". Así tenemos a EspA, EspD y EspB que forman parte del aparato de secreción. Con respecto a los efectores traslocados por este sistema podemos destacarla adhesina Intimina y su receptor Tir (*Translocated Intimin Receptor*) responsables de la característica lesión histológica de EHEC conocida como "*attaching and effacing*" (A/E) (Tobe *et al*, 2006). Otra función de las moléculas efectoras traslocadas por el SST3 es subvertir la acción del sistema inmune del hospedador. No todos los genes que codifican para las moléculas efectoras traslocadas por el SST3 es encuentran a dentro de profagos o islas genómicas. Estos efectores que no están ubicados en LEE, son nombrados *non-LEE effector* (Slater *et al*, 2018).

1.2.4.3. Plásmido pO157

E. coli O157:H7 contiene un plásmido muy conservado, denominado pO157. El pO157 es un plásmido tipo F no conjugativo con un rango de tamaño de 92 a 104 kb. La secuencia completa de pO157 revela 100 marcos de lectura abiertos (ORF). Entre ellos, 43 ORF mostraron suficientes similitudes con proteínas de función conocida, y 22 ORF no poseen similitud con ninguna proteína conocida (Lim *et al*, 2010). Presuntamente, 35 proteínas están involucradas en la patogenia de las infecciones por *E. coli* O157:H7, pero de las cuales solo 19 genes se han caracterizado previamente, entre ellos:

Operón *etp*: este codifica para 13 genes que participan en la formación del Sistema de Secreción de Tipo II (SST2) (Schmidt *et al*, 1997). Este es un complejo multiprotéico

utilizado por muchas bacterias para mover sustratos a través de su membrana celular. Los sustratos liberados en el medio ambiente sirven como efectores locales y de largo alcance que promueven la adquisición de nutrientes, la formación de biopelículas y patogenicidad (Naskar *et al*, 2020). Además, este sistema permite la secreción de la hemolisina Ehx.

- Ehx: esta es una proteína perteneciente al grupo de las hemolisinas, es decir que induce la lisis de eritrocitos (Schmidt *et al*, 1994).
- KatP: es una enzima catalasa-peroxidasa la cual se cree que podría participar en la colonización de los intestinos del huésped mediante la reducción del estrés oxidativo y el uso del subproducto de oxígeno en condiciones de disminución o falta de oxígeno en el intestino del huésped (Brunder *et al*, 1996) (Lim *et al*, 2010).
- EspP: es una serina proteasa capaz de escindir la pepsina A y el factor de coagulación humano V contribuyendo así a las hemorragias de la mucosa observada en pacientes con colitis hemorrágica (Brunder *et al*, 1997).
- ToxB: una posible adhesina la cual contribuye a la adherencia de EHEC a las células epiteliales a través de la promoción de la producción y/o secreción de proteínas del SST3 (Tatsuno *et al*, 2001).
- StcE (Secreted Protease of C1): es una metaloproteasa secretada por el SST2 encargada de clivar a la esterasa C1 (proteína encargada de inhibir C1 para evitar la activación espontanea del sistema de complemento del huésped) y producir la agregación de células T. De esta manera activa respuestas proinflamatorias y de coagulación resultando en daño de tejido, edema intestinal y anomalías trombóticas (Lethem *et al*, 2002).
- Operón *ecf*: el mismo codifica para cuatro genes, *ecf1*, *ecf2*, *ecf3* y *ecf4*. Los genes *ecf1* y *ecf2* codifican un supuesto polisacárido desacetilasa y una LPS α-1, 7-N-acetilglucosamina transferasa, respectivamente, exclusivas de pO157. En cuanto a *ecf3*, presenta similitud con la proteína de membrana yijP presente en la cepa comensal K-12 asociada a la invasión bacteriana. *ecf4* codifica para una miristoil transferasa lipídica A (Lim *et al*, 2010).

Sin embargo, la red reguladora de los genes ubicados en el pO157 y su importancia biológica en la patogénesis no se comprende completamente.

1.2.4.4. Adhesinas

Las adhesinas son un grupo de proteínas que intervienen en la unión y/o colonización de EHEC en superficies abióticas y biológicas, por lo que juegan un papel importante en la virulencia, siendo así dianas para la intervención terapéutica. Estas adhesinas de *E. coli* O157:H7 contribuyen en diversos grados a su interacción con las células epiteliales del intestino grueso (McWilliams, 2014), entre ellas:

- Intimina: esta proteína ubicada en la isla de patogenicidad LEE es esencial para la adhesión íntima y para la formación de lesiones A/E, y la alteración del gen, codificante de intimina, *eae* suprime este fenotipo (Dean-Nystrom *et al*, 1998).
- Fimbrias polares largas (Lpf1 y Lpf2): las mismas interactúan con proteínas de la membrana extracelular como la laminina, colágeno IV y fibronectina siendo los primeros genes identificados fuera de LEE que influyen en el tropismo tisular (Fitzhenry *et al*, 2006).
- EspFu: forma parte del grupo de proteínas de secreción de *E. coli* (Esp). Participa en la vía de señalización de formación de pedestales rio abajo del efector Tir reclutando y activando a la proteína del síndrome de *Wiskott-Aldrich* neural (N-WASP) del huésped impulsando así el ensamblaje de actina (Weiss *et al*, 2009).
- E. coli Common Pilus (ECP) y Hemorragic E. coli Pilus (HCP): son factores de virulencia que median la agregación interbacteriana, la formación de biopelículas, hemaglutinación de eritrocitos, motilidad espasmódica y el reconocimiento específico de los receptores de la célula huésped formando puentes físicos entre las mismas, teniendo así un papel en la colonización del huésped (Rendón *et al*, 2007 & Ledesma, 2010).
- Curli: participa en la mediación de la interacción entre EHEC y proteínas de la matriz extracelular y el complejo de histocompatibilidad de tipo I del huésped. Por otra parte, también es el encargado de mediar la interacción bacteriana con superficies abióticas y

la protección del patógeno de productos químicos antisépticos, lo que posiblemente le dé a EHEC la oportunidad de colonizar y sobrevivir en otras superficies hasta que se disponga de condiciones ambientales más favorables (McWilliams, 2014).

1.2.5. Etapas de la patogenecis

La patogenicidad de la infección por EHEC consta de tres etapas: (1) adherencia inicial y colonización del intestino; (2) translocación de señales celulares y transducción de señales; (3) adherencia íntima de bacterias a células eucariotas por proteínas específica y producción de toxinas Shiga.

1.2.5.1. Adherencia Inicial

La adherencia inicial a las células huésped es el primer paso de la infección de EHEC. La importancia de este paso en la infección reside en que (1) la adherencia es el primer contacto entre las bacterias y las células intestinales sin el cual los otros pasos no pueden ocurrir, y (2) la adherencia es la base de la especificidad del huésped para muchos patógenos (Bardiau *et al*, 2010). En esta etapa EHEC coloniza, mediante las adhesinas descriptas anteriormente en la sección 1.2.4.4, los folículos asociados al epitelio en las placas de Peyeren la superficie de la mucosa intestinal (Phillips *et al*, 2000).

1.2.5.2. Translocación de señales y transducción de señales

El SST3 no es expresado constitutivamente, sino que la bacteria censa diversos factores ambientales y dependiendo de la presencia, o no, de diversos factores va a expresar los genes presentes en la isla de patogenicidad LEE para montar el sistema. Las señales ambientales que censa EHEC son una combinación de temperatura, pH, osmolaridad, calcio, hierro y concentración salina (Kenny *et al*, 1997 & Connolly, 2015). Una vez activado LEE, la bacteria comienza a montar el SST3 para inyectar proteínas efectoras dentro del citosol de la célula huésped. Aunque aún no se comprende completamente, la construcción de SST3 se puede clasificar en cuatro etapas: (1) ensamblaje del cuerpo basal y el aparato de exportación, (2) ensamblaje de la varilla interna y la aguja, (3) ensamblaje del filamento y el translocón, y (4) secreción de efectores (Slater *et al*, 2018).

El filamento EspA es una extensión de la estructura de aguja EscF el cual se autopolimeriza, una vez translocado por el SST3, participando en la adhesión bacteriana y perforando la membrana de la célula huésped junto a EspB y EspD formando el poro de translocación (Gaytán *et al*, 2016).

1.2.5.3. Adherencia íntima y producción de toxina Shiga

El objetivo final del ensamblaje de SST3 es translocar proteínas efectoras para modular las funciones de la célula huésped en beneficio de la bacteria, y esto se logra mediante la alteración de las actividades bioquímicas por los efectores inyectados. Tir es uno de los principales efectores debido a que el mismo es translocado a la superficie de la célula diana como receptor de la intimina, adhesina de membrana de la bacteria, conformando así la adherencia intima entre la bacteria y la célula huésped generando una unión estrecha entre las mismas. Otra proteína efectora, EspFu, se secreta en la célula y trabaja en cooperación con Tir para reclutar proteínas del huésped para subvertir el citoesqueleto del huésped y la polimerización de actina. EspFu recluta la proteína del síndrome de Wiskott-Aldrich del factor promotor de la nucleación de actina (N-WASP) y el sustrato p53 de la tirosina quinasa del receptor de insulina (IRSp53), un regulador importante para la reorganización del citoesqueleto de actina. Esto da como resultado la acumulación de actina debajo de las bacterias adheridas, formando la característica estructura similar a un pedestal (lesión A/E) llevando a la disrupción de la unión estrecha entre células (*tight junctions*) y, eventualmente la separación de la célula de la matriz (**Figura 5**) (Nguyen *et al*, 2012).

Figura 5: Diagrama esquemático de la formación de lesiones A/E. (1) secreción de Tir y EspFu en el citoplasma de la célula huésped; **(2)** reclutamiento de factores del huésped a través de los efectores Tir y EspFu; y **(3)** suberverción de la estructura del citoesqueleto y polimerización de la actina.(Nguyen, 2012)

A su vez, los profagos que se encuentran integrados en el genoma van a ser activados por inducción ligada a respuesta SOS por daño al DNA generado principalmente por especies de oxígeno o nitrógeno reactivos producidos por el sistema inmune del huésped. Entre los diferentes fagos que serán activados está el fago codificante de Stx. Los receptores Stx son las globotriaosilceramidas (Gb3s) que se encuentran en las células de Paneth de la mucosa intestinal humana y en la superficie de las células epiteliales renales. La subunidad Stx B interactúa con Gb3 e induce invaginaciones de membrana para facilitar la internalización de la toxina. Stx internalizada se transporta a través de los primeros endosomas hacia el aparato de Golgi, donde la subunidad A (una N-glucosidasa que impide la síntesis de proteínas) se activa por un evento de escisión, lo que lleva a la necrosis y muerte celular (Croxen M. A. *et al*, 2010).

1.3. La importancia del hierro en sistemas biológicos

El hierro es un nutriente indispensable de la mayoría de los diferentes organismos. Este metal participa en muchas funciones celulares y rutas metabólicas clave, como la síntesis de aminoácidos, el ciclo del ácido tricarboxílico, el transporte de electrones, la replicación del ADN y la respiración celular (Sheldon *et al*, 2016). A su vez, diferentes estudios han demostrado que el hierro es requerido para el crecimiento bacteriano y su biodisponibilidad juega un rol importante en la patogénesis de diferentes patógenos (Runyen-Janecky *et al*, 2013).

1.3.1. Estrés nutricional generado por la biodisponibilidad de hierro

Entre los metales de transición más relevantes biológicamente (hierro, zinc, cobre, magnesio, cobalto, níquel), la bacteria confronta varios obstáculos en el proceso de adquisición del hierro durante el proceso de infección. En un entorno aeróbico el hierro suele estar en mayor cantidad como hierro férrico [Fe (III)], siendo poco soluble en soluciones acuosas y haciendo que no sea apto para la adquisición bacteriana. En cambio, en entornos anaeróbicos y más ácidos se encuentra como hierro ferroso [Fe (II)], el cual es más soluble y de fácil adquisición para los microorganismos (Grass *et al*, 2006).

El hierro no es un nutriente requerido solo para la microbiota y las bacterias patogénicas, sino que también es un nutriente requerido por el huésped por lo que la retención de hierro por parte del huésped es una eficiente estrategia de defensa denominada inmunidad nutricional. La inmunidad nutricional es una estrategia utilizada por el huésped frente una infección de diferentes patógenos. Su principal objetivo es limitar la biodisponibilidad del hierro en el medio, el sistema inmune del humano secreta diversos compuestos, entre ellos: la ferritina, la cual forma compartimientos de almacenamiento de hierro para que el mismo no se encuentre accesible para agentes infecciosos; la lactoferrina, factor retenedor de hierro producido por neutrófilos; y la lipocalin-2, péptido antimicrobiano con funciones pleiotrópicas producida por neutrófilos, macrófagos y células epiteliales la cual neutraliza los sideróforos secretados por las bacterias (Nairz & Günter, 2020).

A raíz de la inmunidad nutricional generada por el huésped y los requerimientos nutricionales de los microorganismos, se va a generar una competencia por el hierro en el sitio de colonización del patógeno bacteriano. Esta competencia va a generar una limitación de la biodisponibilidad de hierro para el patógeno generando así una condición de estrés nutricional en donde diversas vías se van a ver afectadas, entre ellas, las vías involucradas con el crecimiento bacteriano y las rutas metabólicas mencionadas previamente. Por otro lado, también se van a ver afectadas diversas vías que participan en la regulación de factores de virulencia y patogenicidad de la bacteria.

1.3.2. Homeostasis y sistemas de adquisición de hierro en bacterias

Existen esencialmente cinco estrategias utilizadas por las bacterias en la homeostasis del hierro: (1) transporte de hierro de alta afinidad que permite extraer hierro del entorno; (2) depósito de reservas de hierro intracelular para proporcionar una fuente de hierro a la que se puede recurrir cuando los suministros externos son limitados; (3) empleo de sistemas de resistencia al estrés redox (por ejemplo, degradación de especies reactivas de oxígeno inducidas por hierro y reparación del daño inducido por estrés redox); (4) control del consumo de hierro mediante la regulación a la baja de la expresión de proteínas que contienen hierro en condiciones de restricción de hierro; y (5) un sistema regulador general sensible al hierro que coordina la expresión de la maquinaria homeostática del hierro anterior de acuerdo con la disponibilidad de hierro. A pesar de esta diversidad de estrategias, la manera en la que estas son implementadas varía considerablemente según las condiciones ambientales (Andrews *et al*, 2003).

En condiciones de estrés nutricional *E. coli* accede al hierro del medio a través de receptores específicos ubicados en de membrana celular o mediante la secreción de sideróforos y hemoforos. En el primero el hierro ferroso se difunde libremente a través de las porinas de la membrana externa, de modo que puede ingresar al periplasma desde donde puede transportarse al citoplasma a través de los siguientes sistemas: MntH, ZupT, YfeABCD, FutABC, EfeUOB y Feo (**Figura 6A**) (Lau *et al*, 2016). El segundo, se basa en moléculas como los sideróforos y hemoforos, que son sintetizadas y liberadas por las bacterias al medio extracelular para adquirir el hierro de diversas fuentes (**Figura 6B**). Los sideróforos y hemoforos son compuestos quelantes de bajo peso molecular que permiten la solubilización del hierro y, por lo tanto, la adquisición por parte de la bacteria. Mientras que los sideróforos son los encargados de quelar el hierro férrico del medio reduciéndolo a hierro ferroso para que se encuentre disponible para la bacteria, los hemoforos capturan los grupos hemos de la hemoglobina en los glóbulos rojos para acceder al hierro que estos portan (Wandersman & Delepelaire, 2004).

Figura 6: Sistemas bacterianos de adquisición de hierro. (A) Sistemas bacterianos de transporte de hierro ferroso identificados en varias bacterias Gram-negativas. Los rectángulos y los óvalos representan permeasas o canales como transportadores y transportadores ABC, respectivamente. Los círculos representan las proteínas de unión periplásmica. (B) Sistemas bacterianos de transporte de hierro férrico identificados en bacterias Gram-negativas. Los cilindros representan los receptores de la membrana externa. Los rectángulos y los cuadrados representan permeasas y proteínas de unión a ATP, respectivamente. Las formas de 'Pac-man' representan proteínas de unión periplásmica (Lau *et al*, 2016).

1.3.3. Ferric uptake regulator (fur) y mRNA

En *E. coli*, la adquisición y el almacenamiento de hierro están controlados por la proteína reguladora global de absorción férrica (Fur) y el pequeño ARN regulador no codificante (ARNs) RyhB (Porcheron *et al*, 2015). Fur es un metalorregulador homodimérico de 16,8 kDa, producto del gen *fur (ferric uptake regulator)*, que porta un dominio de unión al

ADN de hélice-vuelta-hélice N-terminal y un sitio de unión al correpresor de metal C-terminal que también funciona en la dimerización de la proteína. El Fe²⁺ induce un cambio conformacional que hace que el represor cargado de hierro sea competente para la unión al ADN en una secuencia consenso, denominada "fur-box", ubicada dentro de la región promotora/operadora del gen diana impidiendo que la ARN polimerasa se una al promotor, lo que inhibe la transcripción en condiciones repletas de hierro (Sheldon *et al*, 2016). Cuando a biodisponibilidad de hierro es limitada, Fur se vuelve inactivo y, posteriormente, se inicia la producción de RyhB y los sistemas de adquisición de hierro para restaurar la homeostasis del hierro (**Figura 7**). Igualmente, diversos experimentos de ADNasa I footprinting han demostrado que Fur también se une al ADN en presencia de Mn⁺², Co⁺², Cd⁺² y Zn⁺² (Lorenzo *et al*, 1987).

Figura 7: Representación esquemática de la regulación Fur y RyhB. En entornos ricos en hierro, la proteína Fur activa reprime muchos genes además de *ryhB*, lo que da como resultado la desregulación de genes diana específicos de RyhB. En condiciones pobres en hierro, se alivia la represión de Fur y se expresa *ryhB*, lo que conduce a la regulación (activación o represión) de genes diana específicos de RyhB. (Porcheron, 2015)

La regulación mediada por RyhB se inicia mediante el emparejamiento antisentido del sRNA con sus objetivos de mRNA para afectar positiva o negativamente su traducción y estabilidad. Si bien el papel de estos reguladores en la homeostasis del hierro está bien documentado tanto en bacterias patógenas como no patógenas, muchos estudios recientes también demuestran que estos reguladores están involucrados en la virulencia de las bacterias patógenas.

1.3.4. El regulón Fur

El conjunto de genes que son regulados por la proteína Fur constituyen el regulón Fur. Diferentes estudios han demostrado que, al detectar la disponibilidad de hierro en el medio ambiente, Fur y RyhB pueden regular, ya sea directa o indirectamente muchos genes involucrados en diferentes procesos biológicos o determinantes de la virulencia de las bacterias patógenas (Porcheron *et al*, 2015) (**Figura 8**). Este amplio espectro de genes regulados por Fur en distintos procesos muestra la importancia de este regulador transcripcional en la patofisiología bacteriana.

Figura 8: Determinantes de virulencia regulados por Fur y RyhB en bacterias patógenas. Fur (en ambientes ricos en hierro) y RyhB (en ambientes pobres en hierro) pueden regular directamente (líneas continuas) o indirectamente (líneas punteadas), a través de otros reguladores o la modulación de la concentración de hierro intracelular, la expresión de muchos genes involucrados en la producción de determinantes de virulencia. Los

fenotipos de virulencia pueden ser activados (líneas verdes) o reprimidos (líneas rojas) por Fur o RyhB. (Porcheron*et al.*, 2015)

1.3.5. Fur en la virulencia y patogénesis de E. coli O157:H7

El regulón *fur* ha sido extensivamente estudiado en *E. coli* no patógena (Escolar *et al*, 1997; Hantke, 2002; Lee *et al*, 2007). Sin embargo, todavía hay un elevado grado de desconocimiento de cómo *fur* regula de forma directa o indirecta los diferentes genes involucrados en la patofisiología de *E. coli* O157:H7. Hasta el momento, se conoce que Fur cumple un rol en la regulación tanto positiva como negativa de manera directa o indirecta de los siguientes genes relacionados con la virulencia y patogenicidad de este patógeno:

- Fimbria Lpf2: Fur interactúa directamente con la región fur-box presente en el promotor del gen *lpfA2* y donde actúa como regulador negativo para la fimbria Lpf2 reprimiendo su expresión (Arenas-Hernández *et al*, 2014).
- Adhesina IrgA: Al igual que *lpfA2*, *iha* es regulado negativamente de forma directa mediante la interacción de Fur con su región promotora (Rashid *et al*, 2006).
- Isla de patogenicidad LEE: la misma se encuentra regulada por la concentración de hierro intracelular, por lo que Fur es un regulador positivo indirecto. Ante una condición con alta concentración de hierro intracelular se reprimen las vías de adquisición del hierro haciendo que la concentración intracelular de este disminuya. Como resultado se activa la expresión de *ler*, factor transcripcional de LEE, activando así la expresión de LEE (Tobe *et al*, 2014).
- Ureasas: Fur interactúa directamente en las regiones promotoras de *ureD* y *ureA* las cuales, a diferencia de *lpfA2* e iha, regula positivamente promoviendo su expresión (Heimer *et al*, 2002).

2. Objetivos

2.1. Objetivo General

La principal diferencia genómica entre *E. coli* O157:H7 y *E. coli* comensal K-12 radica en las islas de patogenicidad y el plásmido pO157 que se encuentran presentes en O157:H7 y no en K-12. Dentro de las islas-o y el plásmido pO157 se encuentran codificados los factores de virulencia y patogenicidad de la bacteria, pero los mecanismos de su regulación aún no se encuentran ampliamente caracterizados. Por otro lado, el regulador transcripcional dependiente de hierro *fur*, además de regular los sistemas de adquisición de hierro, también se encuentra asociado a la regulación de genes involucrados en diferentes procesos biológicos, y en el caso de patógenos, a la regulación de algunos factores de virulencia. Si bien se ha evaluado exhaustivamente su rol en la fisiología de *E. coli* K-12, todavía hay poco conocimiento del regulón *fur* en O157:H7. A raíz de estos hechos, en el presente trabajo se propone caracterizar el regulón *fur* de *E. coli* O157:H7 y evaluar como este regulador y la disponibilidad de hierro impacta en la patofisiología de este patógeno.

2.2. Objetivos específicos

Para tal objetivo descripto anteriormente, los siguientes objetivos específicos fueron determinados:

OB1 – Predecir *in silico* el regulón Fur de *E. coli* O157:H7.

OB2 – Generar una cepa de *E. coli* O157:H7 mutante para el gen *fur*.

OB3 – Realizar análisis proteómicos comparativos en la cepa *E. coli* O157:H7 bajo diferentes biodisponibilidades de hierro.

OB4 – Comparar el proteoma de las cepas de *E. coli* O157:H7 tipo salvaje y mutante Δfur .

OB5 – Evaluar cómo la mutación del gen *fur* impacta en procesos que contribuyen con la patogénesis de *E. coli* O157:H7.

3. Materiales y Métodos

3.1. Cepas bacterianas, plásmidos y condiciones de cultivo bacteriano

Las cepas de *E. coli* O157:H7 fueron cultivadas y manipuladas en un laboratorio de Bioseguridad Nivel PII. Las cepas de *E. coli* no patógenas y patogénicas fueron cultivadas rutinariamente en medio líquido Luria-Bertani (LB, Laboratorios Difco, EEUU) debido a su alto contenido de hierro (~7,6 μ M). Para algunos ensayos funcionales (adhesión celular e infección en macrófagos) las cepas de *E. coli* O157:H7 fueron cultivadas en D-MEM (*Dulbecco Modified Eagle médium*, Thermo Fisher), medio pobre en hierro (0,25 μ M), o Roswell Park Memorial Institute (RPMI) 1640 (Gibco), medio sin hierro. Para cultivos en medio sólido los medios fueron complementados con agar bacteriológico al 1,5%. Cuando fue necesario, el medio fue complementado con 30 µg/mL del antibiótico cloranfenicol (Cm) o 100 µg/mL del antibiótico ampicilina (Amp). Todas las cepas fueron cultivadas en condiciones aeróbicas, a 37°C.

Las cepas bacterianas y vectores utilizados en este trabajo se encuentran listados en la tabla 2 y 3.

Cepas	Características /genotipo	Fuente		
	supE44 ∆ lacU169 (φ80	Invitrogen		
E. coli DH5-α	lacZ∆M15) hsdR17 recAlendAl			
	gyrA96 thi-J relAI			
	Cepa tipo salvaje	INTA/Castelar		
<i>E. coli</i> O157:H7 Rafaela II ¹				
	Δfur , Cm ^R	Este trabajo		
<i>E. coli</i> O157:H7 Rafaela II Δfur				
	$\Delta fur/pFurC$, Cm ^R , Amp ^R	Este trabajo		
<i>E. coli</i> O157:H7 Rafaela II				
$\Delta fur/pFurC$				
	$\Delta fur/pLF$, Cm ^R , Amp ^R	Este trabajo		
E. coliO157:H7 Rafaela II				
$\Delta fur/pLF$				
	Cepa R46, expresando el	INTA/Castelar		
E. coli O157:H7 Rafaela II				
		D() 01 1 1 (0		

Tabla 2: Cepas bacterianas utilizada	as en este trabajo.
--------------------------------------	---------------------

Página 31 de 162

pKD46	sistema recombinasa Lambda	
	red helper, Amp ^R	

¹Cepa de *E. coli* O157:H7 perteneciente a la colección de microorganismos del Instituto de Biotecnología, Centro de Investigaciones en Ciencias Veterinarias - INTA/Castelar

Tabla 3: Vectores utilizados en este trabajo.

Plásmidos	Caracteristicas	Fuente	
	Lambda red templateplasmid,	Datsenko and Wanner, 2000	
pKD3	cat (Cm ^R), bla (Amp ^R)		
	Vector de clonación: PT7, lacZ,	Promega, Madison, WI	
pGEM-T	sitio de clonado múltiple; Amp ^R		
	pBBR1-MCS4; 3× FLAG	Marchesiniet al, 2011	
pLF	tagAmp ^R		

3.2. Oligonucleótidos o cebadores

Los oligonucleótidos o cebadores utilizados en el presente trabajo se encuentran listados en la Tabla 4.

Tabla 4: Oligonucleótidos utilizados en este trabajo.

Oligonucleót ido	Secuencia (5' - 3')	Fuente			
Oligonucleótidos utilizados para la mutagénesis en la cepa Rafaela II					
Fw-fur-P1	TGTCACTTCTTCTAATGAAGTGAACCGCTTAGTAACA GGACAGATTCCGCGTGTAGGCTGGAGCTGCTTC	Este trabajo			
Rv-fur-P2	CTTGCATAAAAAAGCCAACCCGCAGGTTGGCTTTT TTCGTTCAGACTGGCCATATGAATATCCTCCTTAG	Este trabajo			
Up-Fur	CCTTGCCGTTGTAAATGTAAG	Este trabajo			
Down-Fur	GCAACGCAAACCGGAAATG	Este trabajo			
Fw-fur	ATGACTGATAACAATACCGCC	Este trabajo			
Rv-fur	TTATTTGCCTTCGTGCGCGT3	Este trabajo			
Oligonucleótidos utilizados para la complementación de la cepa Rafaela II Δfur					
Fw-FurCF	ACTAGTGTGATGCGGCGTAGACTCA	Este trabajo			

Rv-FurCR	GGATCCTTATTTGCCTTCGTGCGCG	Este trabajo		
T7	TAATACGACTCACTATAGGG	UGB-		
		Secuenciación/INTA		
SP6	ATTTAGGTGACACTATAGAA	UGB-		
		Secuenciación/INTA		
Oligonucleótidos utilizados para los ensayos de RT-qPCR				
Fw-qstcE	GCTAAAGCGAAAGTGCTGCT	Amigo N et al, 2016		
Rv-qstcE	TACTGTCCGTTCCAGGCTTT	Amigo N et al, 2016		
Fw-qfliC	TTAGCTGCCACCCTTCATG	Este trabajo		
Rv-qfliC	TCGTCAAGTTGCCTGCATC	Este trabajo		
Fw-qrpoA	GCGCTCATCTTCTTCCGAAT	Amigo N et al, 2016		
Rv-qrpoA	CGCGGTCGTGGTTATGTG	Amigo N et al, 2016		

3.3. Geles de agarosa y corridas electroforéticas

Todas las muestras de DNA fueron resueltas en geles de Agarosa 0,8 o 1%, los cuales contenían Bromuro de Etidio (Promega). Las resoluciones electroforéticas se realizaron en Buffer TAE (40mM de Tris, 20mM de ácido acético, 1mM de EDTA a un pHde 8,0) a 100V. El DNA fue visualizado en un transiluminador bajo luz UV y fotografiado. El tamaño de los fragmentos se estimó comparando el peso molecular del marcador de DNA 100 pb Ladder o 1 Kb Plus DNA Ladder (TransgenBiotech).

3.4. Preparación de E. coli O157:H7 electrocompetente

Se realizó un cultivo *overnight* 1:100 de la cepa Rafaela II en 5 ml de medio de cultivo LB a 37 °C 200 rpm. Posteriormente, se realizó un inoculo (1:100) en 50 ml de LB se cultivó a 37°C en agitación, hasta DO_{600nm} de 0,4 – 0,5. Una vez alcanzada la DO requerida se incubó el cultivo en hielo por 20 minutos. Se centrifugó por 10 minutos a 5000 rpm 4°C. Se descartó el sobrenadante y se lavó el *pellet* tres veces con 50, 25 y 12,5 ml de glicerol 10%. Finalmente, el *pellet* fue resuspendido en 500 µl de glicerol 10%. Las cepas fueron conservadas a -80 °C.

3.5. Preparación de E. coli DH5a quimicompetentes

Se realizó un cultivo *overnight* 1:100 de *E. coli* DH5 α en 3 ml de medio de cultivo LB a 37 °C con una agitación de 200 rpm. Posteriormente, se realizó un inoculo (1:100) en 250 ml de LB se cultivó a 37 °C en agitación, hasta DO_{600nm} de 0,4 – 0,5. Una vez alcanzada la DO requerida se incubo el cultivo en hielo por 15 minutos. Luego el cultivo fue centrifugado por 10 minutos a 4.000 rpm a 4°C. Se descartó el sobrenadante, se resuspendió el *pellet* en 10 ml de TFBI (30 mM de Acetato de potasio, 400 mM de Cloruro de potasio, 10 mM de Cloruro de calcio, 50 mM Cloruro de manganeso) a un pH de 5,8 y se centrifugó por 10 minutos a 4.000 rpm 4 °C. Nuevamente se descartó el sobrenadante y se resuspendió el *pellet* en 1 ml de TFBII (10 mM de MOPS, 75 mM de Cloruro de calcio, 10 mM de Cloruro de Potasio y 10% de Glicerol) a un pH de 6,5. Se realizaron alícuotas de 200 µL en eppendorfs de 1,5 ml y se conservaron a -80 °C.

3.6. Generación de una cepa de E. coli O157:H7 mutante para el gen fur

Para realizar la escisión del gen *fur* en la cepa Rafaela II, se utilizó una estrategia de reemplazo alélico por recombinación homóloga doble utilizando el sistema lambda red (**Figura** 9) (Datsenko & Wanner, 2000). Para ello, se realizó el diseño de los oligonucleótidos (**Tabla** 4) que contenían 50 nucleótidos correspondiente a 50 pb rio arriba y rio abajo del gen *fur*, más 20 nucleótidos que corresponden a secuencias FRT del plásmido pKD3 para amplificar el caset de resistencia a cloranfenicol.

Figura 9: Estrategia de mutagénesis basada en el sistema λ red para generar una cepa *Knock-out* del gen *fur*adaptado de Datsenko & Wanner, 2000.

3.6.1. Generación del amplicón mutagénico

A partir de los oligonucleótidos generados en la sección 3.2., se realizó la amplificación del caset de resistencia a cloranfenicol del plásmido pKD3 mediante una reacción de PCR ("<u>P</u>olymerase <u>C</u>hain <u>R</u>eaction"). Para la siguiente mezcla de reacción se utilizó: 5X GoTaq® Reaction Buffer (Promega), 2 mM de MgCl₂, 0,2 mM de High PuredNTPs (TransgenBiotech), 10 μ M de cada primer (Fw-fur-P1 y Rv-fur-P2), 1 unidad de GoTaq® G2 DNA Polymerase (Promega), 1 μ l de templado y se llevó a un volumen final de 50 μ l con agua mili Q estéril. El programa de PCR utilizado se muestra en la Tabla 5.

Etapa	N° ciclos	Temperatura (°C)	Tiempo
Desnaturalización inicial	1	95	5 minutos
Desnaturalización	35	95	30 segundos
Annealing		56	30 segundos

Extensión		72	1 min, 40 segundos
Extensión final	1	72	7 minutos

Se verificó la presencia del amplicón mediante electroforesis utilizando un gel de agarosa al 0,8% como fue descripto en la sección 3.3. Al final de la electroforesis, el fragmento de DNA correspondientes a las extremidades que flanquean el gen *fur* más el amplicón del caset de resistencia a cloranfenicol (1.050 pb) fueron purificados mediante el kit comercial *EasyPure[®] Quick Gel Extraction Kit* (TransGenBiotech Co.), según las especificaciones del fabricante. Luego, se realizó una cuantificación por espectrofotometría del producto de PCR amplificado utilizando el equipo NanoDrop (Thermo-Fisher).

3.6.2. Transformación de E. coli O157:H7 mediante electroporación

Se realizó un cultivo *overnight* 1:100 de la cepa *E. coli* O157:H7 R46 en 5 ml de medio de cultivo LB + 100µg/ml de ampicilina 37 °C a 200 rpm. Posteriormente, se realizó un inoculo (1:100) en 50 ml de LB suplementado con 100µg/ml de ampicilina y se incubó a 37 °C a 200 rpm. El sistema *lamda red* fue inducido con la adición de 0,2% de L-Arabinosa. Una vez alcanzada la DO (DO_{600nm} de 0,4 - 0,5) requerida, se procedió con el preparado de células electrocompetentes como fue descripto en la sección 3.4. Para realizar la transformación por electroporación se depositó en una cubeta de electroporación (2 mm) (BioRad) 3 µl del producto de PCR (Sección 3.6.1.) + 47 µl de la cepa R46 electrocompetente y se incubó por 20 minutos en hielo. Posteriormente, las muestras fueron sometidas a un pulso de 200 V, capacitancia de 25 µF y resistencia de 200 Ω utilizando un electroporador (Electroporador ECM® 830, BTX). Inmediatamente después del pulso, se añadieron 700 µl de medio LB a las células y se incubaron a 37°C, sin agitación por 1 hora. Las células transformadas fueron seleccionadas en placas de Petri en medio de cultivo LB Agar suplementado con 30 µg/ml de cloranfenicol luego de ser incubadas a 37 °C *overnight*.
3.6.3. Verificación de la presencia del caset de cloranfenicol en la cepa E. coli 0157:H7 Rafaela II

Para verificar la correcta escisión del gen *fur* de la cepa Rafaela II por recombinación homóloga doble, se realizaron diferentes ensayos de PCR colony. Para ello, se utilizaron oligonucleótidos que se hibridan en regiones rio arriba y rio debajo del gen *fur* (Up-Fur & Down-Fur), y específicos del gen *fur* (Fw-fur & Rv-fur) (**Tabla 4**). El programa de PCR utilizado se muestra en la Tabla 6. Los productos de PCR fueron resueltos en un gel de agarosa al 1%. Además, el producto de PCR obtenido a partir de la amplificación con los oligonucleótidos Up-Fur y Down-Fur fueron secuenciados en la a Unidad de Genómica/Nodo Plataforma de Genómica CATG INTA/Castelar.

Etapa	N° ciclos	Temperatura (°C)	Tiempo
Desnaturalización inicial	1	95	5 minutos
Desnaturalización		95	30 segundos
Annealing	35	58	30 segundos
Extensión		72	1 min, 40 segundos
Extensión final	1	72	5 minutos

Tabla 6: Programa de PCR para la verificación de la presencia del caset de cloranfenicol.

3.7. Complementación de la cepa mutante Δ*fur*

3.7.1. Amplificación de la secuencia de fur y su región promotora

Primero, para determinar la región promotora del gen *fur*, se utilizó el programa Artemis (Carver T *et al*, 2012) para visualizar la secuencia completa del genoma de la cepa Rafaela II y obtener la secuencia del espacio intergénico entre el gen *fur* y el gen *fldA* (localizado rio arriba

del gen *fur*). Esta secuencia intergénica con 287 pb fue sometida a un análisis de predicción de regiones promotoras utilizando el programa BPROM de la plataforma Softberry (http://www.softberry.com/). De acuerdo con este análisis *in silico*, fue detectado la secuencia ATAATGAT que corresponde a la región promotora Fur-Box. Luego se diseñaron los oligonucleótidos Fw-FurCF y Rv-FurCR (**Tabla 4**), que contienen el sitio de restricción SpeI y BamHI para la amplificación del espacio intergénico y el gen *fur*.

Para amplificar el gen *fur* y su región promotora a partir del DNA genómico de la cepa Rafaela II, se realizó una reacción de PCR. Para la siguiente mezcla de reacción se utilizó: 5X GoTaq® Reaction Buffer (Promega), 2 mM de MgCl₂, 0,2 mM de High PuredNTPs (TransgenBiotech),0,6 μ M de cada oligonucleótido (Fw-FurCFyRv-FurCR), 1 unidad de GoTaq® G2 DNA Polymerase (Promega), 1 μ l de templado y se llevó a un volumen final de 50 μ l con agua mili Q estéril. El programa de PCR utilizado se muestra en la Tabla 6. Se verificó la presencia del gen *fur* mediante electroforesis descripta en la sección 3.3. El volumen total de la reacción de PCR descrita anteriormente se depositó y resolvió en gel de agarosa al 0,8 %. Al final de la electroforesis, el fragmento de DNA correspondientes al amplicón del espació intergénico más *fur (inter-fur)* (734 pb) fueron purificados mediante el kit comercial *EasyPure*[®] *Quick Gel Extraction Kit* (TransGenBiotech Co.), según las especificaciones del fabricante. Luego, se realizó una cuantificación por espectrofotometría del producto de PCR amplificado utilizando el equipo NanoDrop (Thermo-Fisher).

3.7.2. Clonado de fur más su región promotora en el plásmido pGEM-Teasy

3.7.2.1. Ligación

El producto de PCR amplificado fue clonado en el vector pGEM[®]-T*easy* (*Promega*) (**Figura 10**) para generar el plásmido pG*fur*C. Este vector cuenta con una resistencia a ampicilina y una metodología de selección *Blue-White* por lo cual, el sitio de clonado múltiple se encuentra dentro del gen *lacZ*. La ligación fue realizada por 16 horas a 4 °C mediante una relación de masa 1:3 (vector:inserto), con 25 µg de vector, 3 U de ligasa T4 (*Promega*), Ligase Buffer 10X (Promega) en un volumen final de 10 µl.

Figura 10: Mapa del vector pGEM®-Teasy.

3.7.2.2. Trasformación de E. coli DH5a mediante shock térmico

Una vez realizada la ligación, se procedió con la transformación de bacterias *E. coli* DH5 α quimiocompetentes (sección 3.5.) con el producto de ligación (pGEM-T y el inserto *inter-fur*) mediante shock térmico. Para ello, se incubaron por 20 minutos en hielo 5 µl del producto de ligación (pG*fur*C) + 45 µl de bacterias DH5 α . Se prosiguió a incubar la muestra por 1 minuto a 42°C y luego nuevamente en hielo por 3 minutos. Luego se añadieron 600 µl de medio de cultivo LB y se incubó por 1 hora y 15 minutos a 37°C. El proceso de selección de los transformantes consistió en sembrar una alícuota de 100 µl del cultivo bacteriano en placas de Petri conteniendo LB agar suplementado con 100 mM de IPTG, 50 µl/ml de X-Gal y 100µg/ml de ampicilina. Las placas fueron incubadas a 37 °C *overnight*. Después de este período, se evaluó la presencia de colonias resistentes a ampicilina y la identificación de los clones recombinantes con el plásmido pG*fur*C mediante la detección de colonias de color blanco.

3.7.2.3. Verificación de la presencia del inserto Inter-fur en el vector pGEM-T easy

Para verificar la presencia del inserto "inter-fur" clonado en el vector pGEM-T easy, se realizó un a *colony* PCR mediante el programa descripto en la tabla 6 con los

oligonucleótidos Fw-FurCF y SP6 (**Tabla 4**) y se realizó una electroforesis como fue descripto previamente en la sección 3.3. Los plásmidos positivos fueron enviados a Unidad de Genómica/Nodo Plataforma de Genómica CATG INTA/Castelar para realizar la secuenciación utilizando oligonucleótidos T7 y SP6 (**Tabla 4**) para confirmar la correcta inserción y que no haya mutaciones en el inserto.

3.7.3. Subclonación de inter-fur en el plásmido pLF

Debido a que pGEM®-Teasy es un vector de alto número de copias, se procedió a clonar la secuencia *inter-fur*en el vector pLF (Marchesini *et al*, 2011).

3.7.3.1. Digestión enzimática del plásmido pGfurC y el vector pLF

Se realizó un cultivo *overnight* de *E. coli* DH5a pG*fur*C y *E. coli* DH5a pLF en 5 ml de medio de cultivo LB suplementado con ampicilina (100 µg/ml) a 37 °C con una rotación de 200 rpm. Se purificó el plásmido pG*fur*C y el vector pLF utilizando el kit comercial *EasyPure*[®] *Plasmid Mini Prep Kit* de (TransGenBiotech Co.), según las especificaciones del fabricante.

Luego de la obtención del plásmido pG*fur*C y el vector pLF, se realizó una digestión enzimática utilizando las enzimas BamHI (Promega) y SpeI (Promega) incubadas a 37 °C por 2 horas y 30 minutos para pG*fur*C y 18h para pLF. Posteriormente, se realizó una electroforesis del producto de digestión según la metodología mencionada en la sección 3.3. La región *inter-fur* y el vector linealizado pLF fueron purificados mediante el kit comercial *EasyPure*[®] *Quick Gel ExtractionKit* (TransGenBiotech Co.) y cuantificados por espectrofotometría utilizando el equipo NanoDrop (Thermo-Fisher).

3.7.3.2. Ligación de fur más su región promotora en el plásmido pLF

Los productos digeridos y purificados correspondientes al inserto *inter-fury* al plásmido pLF descriptos anteriormente fueron sometidos a una reacción de ligación equimolar de 3:1 (iserto:vector), con 3 U de la T4 DNA ligase (*Promega*), 1 µL de Ligase Buffer 10X (Promega)

en un volumen final de 10 μ l. La reacción fue mantenida a temperatura de 4 °C durante toda la noche. El producto de ligación fue denominado pLF*fur*C.

3.7.3.3. Trasformación de E. coli DH5a con el plásmido pLFfurC mediante shock térmico

Una vez realizada la ligación, se procedió con la transformación de las bacterias quimiocompetentes *E. coli* DH5 α (preparadas de acuerdo con el protocolo descripto en la sección 3.5.) con el producto de ligación pLF*fur*C mediante shock térmico como descripto en la sección 3.7.2.2. Para ello, se incubaron por 20 minutos en hielo 5 µl de pLF*fur*C + 45 µl de bacterias DH5 α quimiocompetentes. Luego el procedimiento de shock térmico las bacterias fueron sembradas en medio de cultivo LB agar suplementado con 100 µg/mL de ampicilina. Las placas fueron incubadas a 37°C por 12 horas.

3.7.3.4. Verificación de presencia del inserto Inter-fur en el plásmido pLF

Para verificar la presencia del inserto *inter-fur* clonado en el vector pLF, se realizó un cultivo *overnight* de 5 colonias en 5 ml de medio de cultivo LB a 37 °C con una rotación de 200 rpm. Se purificó el plásmido pLF*fur*C utilizando el kit comercial *EasyPure® Plasmid Mini Prep Kit* de (TransGenBiotech Co.), según las especificaciones del fabricante. Se procedió a realizar una PCR según el programa descripto en la tabla 6 con los con los oligonucleótidos Fw-FurCF y Rv-FurCR (**Tabla 4**) y se realizó una electroforesis como fue descripto previamente en la sección 3.3. Los plásmidos positivos fueron enviados a Unidad de Genómica/Nodo Plataforma de Genómica CATG INTA/Castelar para realizar la secuenciación utilizando oligonucleótidos Fw-FurCF y Rv-FurCF (**Tabla 4**) para confirmar la correcta inserción y que no haya mutaciones en el inserto.

3.7.3.5. Transformación de la cepa E. coli O157:H7 Rafaela II Δfur

En esta etapa la cepa *E. coli* O157:H7 fue transformada con la construcción pLF*fur*C y con el plásmido pLF vacío. El plásmido pLF*fur*C fue extraído de uno de los clones positivos de

E. coli DH5a (sección 3.7.3.3.) el cual fue confirmado mediante secuenciación (sección 3.7.3.4.), utilizando el kit comercial *EasyPure[®] Plasmid Mini Prep Kit* de (TransGenBiotech Co.), luego el mismo fue cuantificado por espectrofotometría. El producto de la *Mini Prep* fue utilizado para transformar células electrocompetentes de la cepa *E. coli* O157:H7 Δfur que fueron preparadas como fue descripto en la sección 3.4. La transformación fue conducida por electroporación siguiendo los mismos parámetros descriptos en la sección 3.6.2. Para ello, 5µl del plásmido pLF*fur*C y 5µl del plásmido pLF fueron incubados individualmente con 45µl de bacteria Rafaela II Δfur electrocompetente por 20 minutos en hielo. La electroporación fue llevada a cabo en un electroporador (Electroporador ECM® 830, BTX). Inmediatamente después del pulso, se añadieron 700 µl de medio LB a las células y se incubaron a 37°C, sin agitación por 1 hora y 30 minutos. Las células transformadas fueron seleccionadas en placas de Petri con medio de cultivo LB Agar suplementado con cloranfenicol 30 µg/ml luego de ser incubadas a 37 °C *overnight*.

3.7.3.6. Verificación de la presencia del plásmido pLFfurC en la cepa E. coli O157:H7 Rafaela II Δfur

Para verificar la correcta transformación de la cepa Δfur con el plásmido pLF*fur*C, se realizó un a *colony* PCR mediante el programa descripto en la tabla 6 con los oligonucleótidos Fw-FurCF y Rv-FurCR (**Tabla 4**) y se realizó una electroforesis como fue descripto previamente en el punto 3.3. Las colonias obtenidas fueron nombradas $\Delta fur/pFurC$.

3.8. Evaluación del perfil de crecimiento de las cepas tipo salvaje y mutante de *E. coli* O157:H7 ante diferentes biodisponibilidades de hierro

Primero, se realizó un cultivo 1:100 *overnight* de las cepas Rafaela II salvaje, Rafaela II Δfur (Δfur) y Rafaela II $\Delta fur/pFurC$ ($\Delta fur/pFurC$) en 5 ml de medio LB a 37 °C 200 rpm. Luego, se realizó un inóculo de concentración correspondiente a 0,02 en 20 ml de LB (control) y LB suplementado con 200 μ M, 250 μ M o 300 μ M del quelante de hierro 2,2'-Bipyridyl (BPD)

(Sigma) para limitar la biodisponibilidad de hierro en el medio. El seguimiento del perfil de crecimiento fue determinado mediante una DO_{600nm} cada 1 hora durante 10 horas. A partir de los datos de DO_{600nm} , se trazaron curvas de crecimiento comparando las diferentes cepas en presencia y ausencia del quelante de hierro BPD. Los datos de DO_{600nm} se procesaron y representaron utilizando el software GraphPad Prism v.5.0. Se realizaron tres replicas biológicas para cada condición.

3.9. Análisis proteómica diferencial cuantitativa basado en *tándem mass* tag (TMT)

3.9.1. Extracción de proteínas a partir del lisado bacteriano total

Para la extracción de las proteínas, la cepa E. coli O157:H7 Rafaela II salvaje fue crecida en medio de cultivo LB y LB suplementado con 300 μ M BPD, y la cepa Rafaela II Δfur fue crecida en medio de cultivo LB a 37 °C a una agitación de 200 rpm, hasta el crecimiento exponencial ($DO_{600nm} = 0.8$). Los cultivos fueron centrifugados a 5.000 rpm a 4°C, por 10 minutos, se descartó el sobrenadante y el pellet fue lavado dos veces con 40 ml de PBS. Luego, el pellet fue resuspendido en 1 ml de Buffer de Lisis (Tris-HCl 12,5 mM pH 7,2, urea 7M, tiourea 2M, SDC (sodiumdeoxycholate) 3% y DTT (ditiotreitol) 1,5 %) + 10 ml de inhibidor de proteasas (Roche)). Se procedió a sonicar las muestras mediante seis pulsos de cinco segundos con 30 segundos de descanso a una potencia de 30 Hertz. Posteriormente, las muestras fueron centrifugadas a 4°C, 13.000 rpm por 40 minutos, se descartó el pellet. Luego, a este sobrenadante se le añadió acetona en la proporción de cinco volúmenes del sobrenadante y se incubó a 4°C por 18 horas. Las muestras fueron centrifugadas a 8.000 rpm a 4 °C por 40 minutos y el *pellet* obtenido fue liofilizado. Se realizaron cinco replicas biológicas para cada condición. El método de Bradford (Bradford, 1976) fue utilizando para cuantificar las proteínas utilizando una curva de BSA como estándar. Las muestras proteicas obtenidas fueron enviadas al laboratorio del Dr. Jin Long Bei en AGRO-Biological Gene Research Center, Guangdong Academy of Agricultural Sciences en Guangzhou, China.

3.9.2. Resolución electroforética en gel de poliacrilamida

Para evaluar la calidad de las proteínas extraídas, las mismas fueron resueltas en un gel de acrilamida-bisacrilamida al 12% en condiciones desnaturalizantes, según Laemmli, 1970. Las muestras fueron diluidas en Buffer carga 2X (SDS 2 %, β -mercaptoetanol 2 %, glicerol 20 % y azul de bromo-fenol 0,01 % en Tris 0,0065 M (pH 6,8)) y hervidas por 10 min. Luego las muestras fueron sembradas en el gel y la electroforesis ocurrió en Buffer Laemmli (2-Mercaptoetanol 0.1%, Azul de Bromofenol 0.0005%, Glicerol, 10%, SDS 2%, Tris-HCl, 63 mM, pH 6.8) a 100 V. Posteriormente, el gel fue teñido con *Coommassie blue* R-250 (Metanol 45%, Ácido acético glacial 10%, Agua 45% y 3g/L *Coomassie Brilliant Blue* R-250).

3.9.3. Digestión de proteínas

Para la digestión, la solución proteica que contenía 100 µg de proteína se redujo con 2 µl de tris (2-carboxietil) fosfina (TCEP) a 37 °C durante 60 min y se alquiló con 4 µl de iodoacetamida (IAM) a temperatura ambiente durante 40 minutos en la oscuridad. Se añadieron cinco volúmenes de acetona fría para precipitar la proteína a -20 °C *overnight*. Después de la centrifugación a 12.000 g a 4 ° C durante 20 minutos, el *pellet* se lavó dos veces con 1 ml de solución acuosa de acetona al 90% pre-enfriada. Luego, el *pellet* fue resuspendido con 100 µl del buffer triethyammonium bicarbonate (TEAB) a 10 mM. La tripsina (Promega, Madison, WI) fue añadida a una proporción de masa de tripsina a proteína de 1:50 y se incubó a 37 °C *overnight*. La mezcla de péptidos fue desalinizada por C18 Zip-Tip, y cuantificada por PierceTM *Quantitative Colorimetric Peptide Assay* (23275) y luego liofilizada por SpeedVac.

3.9.4. Etiquetado TMT

Los péptidos digeridos por tripsina fueron marcados con TMT-16Plex (Thermo Fisher Scientific, MA, EUA, Art No.A44520) de acuerdo con las instrucciones del fabricante. Una unidad de reactivo TMT se descongeló y se reconstituyó en acetonitrilo de 50 µl, después de marcar durante 2 horas a temperatura ambiente, se agregó hidroxilamina para reaccionar durante 15 minutos a temperatura ambiente. Finalmente, todas las muestras se agruparon, desalaron y secaron al vacío.

3.9.5. Separación de fase invertida de pH alto

La mezcla peptídica se resuspendió en buffer A (formiato de amonio de 20 mM en agua, pH 10.0, ajustado con hidróxido de amonio), y luego se fraccionó mediante separación de pH alto utilizando el sistema Ultimate 3000 (ThermoFisherscientific, MA, EUA) conectado a una columna de fase inversa (columna XBridge C18, 4.6 mm x 250 mm, 5 µM, (Waters Corporation, MA, Estados Unidos). La separación de pH alto fue realizada utilizando un gradiente lineal, comenzando de 5% B a 45% B en 40 min (B: formiato de amonio 20mM en 80% ACN, pH 10.0, ajustado con hidróxido de amonio). La columna se volvió a equilibrar en la condición inicial durante 15 min. El caudal de la columna se mantuvo en 1 ml/minuto y la temperatura de la columna se mantuvo a 30°C. Se recolectaron doce fracciones; Cada fracción se secó en un concentrador de vacío para el siguiente paso.

3.9.6. Análisis nano-HPLC-ms/ms

Los péptidos fueron disueltos en el disolvente A (A: 0,1% de ácido fórmico en agua) y se analizaron mediante OrbitrapExploris 480 acoplado a un sistema EASY-nanoLC 1200 (Thermo Fisher Scientific, MA, EUA). La muestra de péptidos de 2 µl se cargó en una columna analítica de 25 cm (75 µm de diámetro interior, resina de 1,9 µm)) y se separó con un gradiente de 120 min a partir de un tampón B al 4% (80% ACN con 0,1% de FA) durante 8 minutos, seguido de un aumento gradual al 70% en 110 minutos, 90% en 1 minuto y permaneció allí durante 4 minutos, luego se equilibró en 4.8% durante 5 minutos. El caudal de la columna se mantuvo en 300 nl/minuto con una temperatura de la columna de 55 °C. El voltaje de electrospray se ajustó a 2 kV. El espectrómetro de masas se ejecutó en modo de adquisición dependiente de datos (DDA) y cambió automáticamente entre el modo MS y MS/MS. El estudio de los espectros MS de barrido completo (m/z 350-1500) fue adquirido en un Orbitrap (Thermo Fisher) con una resolución de 60.000. El objetivo de control automático de ganancia (AGC) de estándar y el tiempo máximo de inyección de Auto. Luego, los iones precursores se seleccionaron en celda de colisión para la fragmentación por disociación de colisión de mayor energía (HCD), la energía de recolección normalizada fue de 36. La resolución MS/MS se

estableció en 30.000, el objetivo de control automático de ganancia (AGC) de Custom, el tiempo máximo de inyección de Auto y la exclusión dinámica fue de 45 segundos.

3.9.7. Análisis de datos

Los espectros de masas obtenidos en tándem fueron procesados por el PEAKS Studio versión 10.6 (BioinformaticsSolutions Inc., Waterloo, Canadá). PEAKS DB se creó para buscar en la base de datos de STEC_O157H7_str_RafaelaII asumiendo tripsina como la enzima digestiva. Se realizaron búsquedas en PEAKS DB con una tolerancia de masa de iones de fragmentos de 0,02 Da y una tolerancia de iones padre de 10 ppm. La carbamidometilación en cisteína y TMT 16-plex en lisina y el término N de la proteína se especificaron como la modificación en metionina y la acetilación en el término N de la proteína se especificaron como las modificaciones variables. Los péptidos fueron filtrados con un *False Discovery Rate* (FDR) del 1% y las proteínas fueron filtradas por 1 péptido único. Se utilizaron iones reporteros para calcular la relación de cuantificación entre las muestras. La normalización se calculó a partir de la intensidad total de todas las etiquetas en todos los péptidos cuantificables. Luego de un análisis estadístico por prueba T, se seleccionaron las proteínas expresadas diferencialmente con un *p-value* $\leq 0,05$ y un *fold change* $\leq 1,5, \leq 1/1,5$.

3.10. Ensayo de adhesión de las cepas tipo salvaje y mutante de *E. coli* O157:H7 a células epiteliales intestinales HCT-8

3.10.1. Preparación de monocapas celulares de células HCT-8

La línea celular HCT-8 (ATCC, CCL-244) derivada de adenocarcinoma ileocecal colorectal humano es utilizada como modelo de epitelio colónico humano (Zumbrun *et al*, 2010). Las células HCT-8 fueron cultivadas en medio RPMI 1640 (Gibco), el cual contiene 10% de suero fetal bovino (SFB, Gibco), 2,4g/l de Na₂CO₃, 2 mM de L-glutamina,10 mM de HEPES, 1mM de Piruvato de Sodio, 2,5 g/l de glucosa suplementado con 100 UI/ml penicilina y 100µl/ml de estreptomicina (Sigma-Aldrich, USA) a 37°C en atmósfera húmeda con 5% CO₂.

3.10.2. Ensayo de adhesión celular

Para el ensayo de adhesión celular se sembraron 2 x 10⁶ de la célula HCT-8 en placas de cultivo celular de 12 pocillos y se incubaron a 37°C en atmósfera húmeda con 5% CO₂ por 18h. Para la preparación del inoculo bacteriano se realizó un cultivo overnight 1:100 de las cepas Rafaela II salvaje, $\Delta fur y \Delta fur/pFurC$ en 5 ml de medio de cultivo LB a 37 °C 200 rpm por 18h. Previo a la infección bacteriana, las células fueron lavadas 3 veces con PBS (pH=7) y se les agregó 1 ml de RPMI sin antibióticos y SFB. Los cultivos bacterianos crecidos overnight, fueron lavados tres veces con PBS. Para ello, las células fueron centrifugadas a 4.000 rpm por 3 minutos. Luego, se realizó un inoculo 1:100 en 5 ml de medio de cultivo RPMI y se incubaron los inóculos hasta alcanzar una DO_{600nm} de 0,5. Luego las células HCT-8 fueron infectadas con una MOI de 100 a partir del cultivo bacteriano y se incubó durante 4 horas a 37 °C bajo una atmósfera de 5 % de CO₂. Al finalizar este periodo, el cultivo celular fue lavado tres veces con 1 ml de PBS para descartar las bacterias que no se adhirieron, y se prosiguió a lisar las células epiteliales con 1ml de Tritón X-100 (0,15%) (Sigma) por 5 minutos a 37 °C. Finalmente se realizaron diluciones seriadas y se sembraron 100 µl en medio de cultivo LB agar, las mismas fueron incubadas a 37 °C. El proceso de adhesión celular fue evaluado mediante el recuento de UFC/ml.

El ensayo fue realizado por triplicado. Los resultados se expresaron como media (±) desviación estándar. La diferencia significativa entre los grupos se calculó mediante la prueba ANOVA, seguida de la prueba "Turkey", ambas disponibles en el software GraphPad Prism 5.0 (GraphPad Software).

3.11. Ensayo de supervivencia intracelular de las cepas tipo salvaje y mutante de *E. coli* O157:H7 a macrófagos murinos RAW264.7

3.11.1. Preparación de monocapas celulares de células RAW264.7.

La línea celular RAW264.7 (ATCC-TIB-71) derivada de un tumor inducido por el virus de la leucemia murina de Abelson en células de macrófagos fue utilizada para el presente trabajo. Las células RAW264.7 fueron cultivadas en medio D-MEM el cual contiene 10% de

suero fetal bovino (SFB, Gibco), 2,4g/l de Na₂CO₃, 2 mM de L-glutamina,10 mM de HEPES, 1mM de Piruvato de Sodio, 2,5 g/l de glucosa suplementado con 100 UI/ml penicilina y 100µl/ml de estreptomicina (Sigma-Aldrich, USA) a 37°C en atmósfera húmeda con 5% CO₂.

3.11.2. Ensayo de infección

Para este ensavo se sembraron 2×10^5 de células RAW264.7 en placas de cultivo celular de 12 pocillos y se incubaron a 37°C en atmósfera húmeda con 5% CO₂ durante por 18 horas. Previo a la infección bacteriana, las células fueron lavadas 2 veces con PBS (pH=7) y se les agregó 1 ml de DMEM más 10% de SFB, sin antibióticos. Para la preparación del inoculo bacteriano se realizó un cultivo *overnight* 1:100 de las cepas Rafaela II salvaje, Δfur y ∆fur/pFurC en 5 ml de medio de cultivo LB a 37 °C 200 rpm. Posteriormente se realizó un inoculo 1:100 en 15 ml de medio de cultivo D-MEM de cada cepa bacteriana. Una vez que los inóculos alcanzaron una DO_{600nm} de 0,5, se infectó con una MOI de 10 el cultivo de células RAW264.7, la placa se centrifugó brevemente (400 g, 5 min) para sincronizar la infección y se incubó durante 30 minutos a 37 °C bajo 5 % de CO₂. Las células se lavaron tres veces con PBS y se añadió medio de cultivo D-MEM + SFB al 10% + 100 µg/ml de gentamicina para matar las bacterias que no fueron fagocitadas por los macrófagos y se incubó nuevamente a 37°C bajo 5% de CO₂. Después de 2 horas de infección, se recogieron los sobrenadantes, se lavaron las células con PBS tres veces y se añadió medio fresco que contenía 20 µg/ml de gentamicina y SFB al 5 %. Para determinar el número de bacterias intracelulares en los macrófagos infectados en los tiempos 2h y 24h post infección, los macrófagos fueron lisados con Tritón X-100 (0,15%) por 5 minutos a 37 °C. Posteriormente se realizó una dilución seriada en PBS donde se sembraron 100 µl en medio de cultivo LB agar que fue incubado a 37 °C. La supervivencia bacteriana al ataque de los macrófagos fue evaluada mediante el recuento de UFC/ml.

El ensayo fue realizado por triplicado. Los resultados se expresaron como media (±) desviación estándar. La diferencia significativa entre los grupos se calculó mediante la prueba ANOVA, seguida de la prueba "Turkey", ambas disponibles en el software GraphPad Prism 5.0 (GraphPad Software).

3.12. Ensayo de resistencia al estrés ácido

Para evaluar la capacidad resistencia al estés ácido de Rafaela II salvaje, Δfur y $\Delta fur/pFurC$ se realizó un cultivo *overnight* 1:100 de cada una de las cepas en 5 ml de medio de cultivo LB a 37 °C 200 rpm. Posteriormente, el cultivo fue lavado tres veces con PBS a 4.000 rpm por 3 minutos. Se realizó un inoculo (1:100) de las diferentes cepas en 15 ml de medio de cultivo LB y se incubo a 37 °C, 200 rpm. Una vez que los inóculos alcanzaron una DO_{600nm} de 0,5 (este punto será considerado el tiempo cero (T.0), 1 ml de cultivo fue centrifugado a 4.000 rpm por 4 min y lavado una vez con PBS (pH=7.0). Los *pellets* bacterianos fueron resuspendidos en LB pH = 2,5 y LB pH = 4,5 e incubados por 30 minutos a 37 °C. Posteriormente, el cultivo bacteriano fue centrifugado a 4.000 rpm por 4 minutos y resuspendido en 1 ml de PBS. A continuación, se realizaron diluciones seriadas en PBS y se sembraron 100 µl en medio de cultivo LB agar y se incubaron a 37 °C. La resistencia de las cepas de *E. coli* O157:H7 a diferentes condiciones de pH se evaluó a través del análisis de viabilidad bacteriana mediante el recuento UFC/ml en placas LB agar, luego de su incubación a 37 °C. El porcentaje de viabilidad se determinó a través de la siguiente fórmula: UFC (condición estrés) x 100/ UFC (T.0).

El ensayo fue realizado por triplicado. Los resultados se expresaron como media (±) desviación estándar. La diferencia significativa entre los grupos se calculó mediante la prueba ANOVA, seguida de la prueba "Turkey", ambas disponibles en el software GraphPad Prism 5.0 (GraphPad Software).

3.13. Ensayo de motilidaden agar blando

Para evaluar la motilidad bacteriana se realizó un cultivo *overnight* 1:100 de Rafaela IIsalvaje, Δfur y $\Delta fur/pFurC$ en 5 ml de medio de cultivo LB a 37 °C 200 rpm. Posteriormente a DO_{600nm} de estos cultivos fueron ajustadas para 0.2 y se sembraron en forma de *spot* 1,5 µl de cultivo en el centro de una placa de Petri conteniendo medio TSB (*TrypticSoy Broth*) conteniendo 0,3% de agar. Para evaluar la motilidad bacteriana se midió el radio de crecimiento luego la incubación a 37 °C por 18 horas. El ensayo fue realizado por triplicado. Los resultados

se expresaron como media (±) desviación estándar. La diferencia significativa entre los grupos se calculó mediante la prueba ANOVA, seguida de la prueba "Turkey", ambas disponibles en el software GraphPad Prism 5.0 (GraphPad Software).

3.14. Análisis de expresión génica

3.14.1. Extracción de RNA total de las cepas de E. coli O157:H7

Todos los procedimientos relacionados con la manipulación del ARN se realizaron utilizando materiales dedicados exclusivamente para este fin. Inicialmente, se realizó un cultivo overnight 1:100 de Rafaela II salvaje, Δfur y Δfur C en 5 ml de medio de cultivo LB a 37 °C, 200 rpm. Luego, se realizó un inoculo en medio LB y LB suplementado con 300µM de BPD y fueron incubados a 37 °C hasta alcanzar la DO_{600nm} 0,4–0,5. Los cultivos fueron centrifugados a 5.000 rpm durante 10 min a 4 °C, el sobrenadante fue descartado y el *pellet* fue resuspendido en 1 ml de Trizol (Invitrogen). Posteriormente, se añadieron 200 µl de cloroformo y se centrifugó a 12.000 rpm durante 15 min a 4 °C. Se extrajo el sobrenadante, se agregaron 100 µl de cloroformo y se centrifugó nuevamente a 12.000 rpm por 10 minutos a 4 °C. Se extrajo el sobrenadante y se agregaron 600 µl de isopropanol (Sigma) + 60 µl de Acetato de sodio (3M) (Sigma). Luego de incubar la muestra por 2 h a -70 °C, la misma fue centrifugada a 12.000 rpm por 20 minutos a 4 °C. Se descartó el sobrenadante y el *pellet* fue lavado con etanol frio al 70%, y se centrifugó a 12.000 rpm por 10 minutos a 4 °C. Se agregaron 20 µl de agua libre de RNAs (Sigma) + 20 µl de cloruro de litio (Thermo Fisher) y se incubó a -80 °C overnight. Posteriormente, la muestra fue centrifugada a 12.000 rpm por 30 min a 4 °C. Se descartó el sobrenadante y el *pellet* fue lavado con etanol 70%, la muestra fue centrifugada a 12.000 rpm por 10 minutos a 4 °C. Se descartó el sobrenadante y se agregaron 20 µl de agua UltraPureTM DNase/RNase-Free (Thermo Fisher).

Para verificar la integridad de la muestra, se corrió en un gel de agarosa al 2%, utilizando 1 μ l de muestra + 4 μ l de *Loading Buffer*. Luego la muestra fue cuantificada por espectrofotometría utilizando un NanoDrop.

3.14.2. Ensayo de retro-transcripción

Previamente a la síntesis de cDNA, el RNA fue sometido a un tratamiento con DNAsa (Invitrogen). Se utilizo 1 µg de RNA, 1 µl de DNAsa I, 1 µl de 10X *DNAse I Reaction Buffer* y se incubo a 37 °C por 30 minutos. Posteriormente para armar la reacción de retro-transcripción se utilizó 10 µl del RNA previamente tratado con DNAsa, más 1 µl de *Random primers* (30 mg/µl) (Invitrogen), 1 µl de dNTPs (Transgen) y 1 µl de agua MiliQ estéril. La mezcla fue incubada a 65 °C por 5 minutos. A continuación, se agregó a la reacción, 2 µl de DTT (Invitrogen), 4 µl *M-MLV Reverse Transcriptase 5X Reaction Buffer* (Promega) y 1 µl *M-MLV Reverse Transcriptase* (Promega). Luego, la mezcla fue sometida a un termociclador MiniAmpTM (AppliedBiosystems) a temperatura de 25 °C por 10 minutos, 42 °C por 50 minutos, y 70 °C por 15 minutos. Las muestras que contenían el ADN complementario (cDNA) generado se mantuvieron a -20°C hasta su uso.

3.14.3. PCR cuantitativa en tiempo real (RT-qPCR)

Cada muestra de RNA extraído y transformado en cDNA (sección 3.14.2.) se sometió reacciones de qPCR correspondiente a cada par de cebadores utilizados (**Tabla 4**). El gen *housekeeping rpoA* (*DNA-directed RNA polymerasesubunitalpha*) fue utilizado como control de expresión génica constitutiva. La mezcla de reacción consistió en 1µL de cDNA, 5 µL *SYBR*® *Green PCR MasterMix* (Life Technologies), 0,1 µM de cada primer. La amplificación fue realizada en un termociclador en tiempo real StepOne plus (AppliedBiosystems). Todas las reacciones se realizaron con tres replicas biológicas, utilizando tres replicas técnicas. Los datos generados fueron analizados utilizando el método $2^{-\Delta\Delta CT}$ con la corrección de la eficiencia. Las curvas de amplificación se estudiaron usando el software LinReg (Ramakers *et al*, 2003; Gruber & Sperandio, 2015; Herold *et al*, 2005). Los resultados finales y el análisis estadístico de permutación se evaluaron con el software fgStatistic (http://www.infostat.com.ar/?lang=en). El procedimiento de PCR cuantitativa fue diseñado de acuerdo con las recomendaciones generales MIQE (Bustin *et al*, 2009).

3.15. Análisis bioinformático

Con el objetivo de predecir los genes que podrían ser parte del *fur* regulón, primero se descargó la secuencia fasta de aminoácidos de las cepas *E. coli* K-12 y *E. coli* O157:H7 Rafaela II de NCBI. Luego se realizó la predicción de secuencias fur-box en regiones promotoras de las cepas K-12 y Rafaela II mediante el programa PRODORIC (Dudek & Jahn, 2022). El conjunto de genes obtenidos a partir del análisis por PRODORIC y las proteínas identificadas en el analsis proteómico fueron sometidos a los siguientes análisis: la predicción de factores de virulencia fue hecha mediante la base de datos *virulence factor database* (VFDB) (Chen *et al*, 2005); las anotaciones funcionales fueron asignadas por la base de datos COG (Galperin*et al*, 2015) y a través del software Blast2GO (Conesa *et al*, 2005); y el GOATOOLS se utilizó para realizar el análisis de enriquecimiento GO (Klopfenstein *et al*, 2018).

4. Resultados y Discusión

4.1. Predicción in silico del regulón fur en E. coli O157:H7

Como fue mencionado en la sección 1., la principal diferencia genómica entre *E. coli* patogénica O157:H7 y *E. coli* comensal K-12 radica en las islas de patogenicidad y el plásmido pO157 que se encuentran presentes en O157:H7 y no en K-12. Dentro de las islas-o y el plásmido pO157 se encuentran codificados los factores de virulencia y patogenicidad de la bacteria, pero, aunque se han realizado varios estudios, todavía hay un grado de desconocimiento de la totalidad de los factores de virulencia ubicados en estas islas-O que contribuyen a la infección por *E. coli* O157:H7 y como estos son regulados. A raíz de estos hechos, se procedió a realizar un análisis *in silico* comparativo entre *E. coli* K-12 y *E. coli* O157:H7 Rafaela II para predecir los posibles genes que podrían ser regulados por Fur. El análisis constó de tres etapas: (1) la predicción de secuencias fur-box en las regiones promotoras utilizando el programa PRODORIC; (2) un análisis de anotación funcional; y (3) un análisis de anotación estructural (**Figura 11**).

Figura 11: Esquema del proceso de la estrategia bioinformática. (1) predicción de secuencias fur-box; (2) análisis de anotación funcional; y (3) análisis de anotación estructural.

4.1.1. Predicción de las secuencias fur-box en las regiones promotoras mediante PRODORIC

Para realizar la predicción de secuencias fur-box en las regiones promotoras de *E. coli* O157:H7 y *E. coli* K-12, las secuencias de aminoácidos en formato fasta de ambas cepas fueron analizadas mediante el programa PRODRIC (Dudek & Jahn, 2022). Este es una base de datos sobre regulación y expresión génica en procariotas el cual incluye una colección de sitios de unión de factores de transcripción. Para realizar el análisis se realizó una búsqueda virtual de *footprints* con la matriz MX000128. Como resultado, pudimos observar que la cepa K-12 cuenta con 314 genes que contienen secuencias fur-box en su región promotora, mientras que Rafaela II cuenta con 427 genes (**Figura 12A**). Al realiza un análisis comparativo se vio que del total de los genes predichos que cuentan con secuencias fur-box en su región promotora, un 32,1% (101) y 52,2% (223) son exclusivos de la cepa K-12 y Rafaela II respectivamente (**Figura 12B**). La lista de todos los genes identificados con secuencias fur-box en su promotor se encuentra presente en el anexo I.

Luego se planteó si en la lista de los genes con predicción positiva para secuencias furbox en Rafaela II habían genes descriptos como factores de virulencia de *E. coli* O157:H7. Para

ello, se realizó una identificación de estos genes en la base de datos *virulence factor database* (VFDB) (Chen *et al*, 2005). A partir de este análisis se predijo que 31 genes que cuentan con secuencias fur-box en sus promotores, son factores de virulencia de *E. coli* O157:H7 (**Tabla 7**). Sin embargo, podemos ver listado el gen *ler*, regulador de la isla de patogenicidad LEE, el cual se ha demostrado en otros ensayos que el mismo es regulado por la concentración de hierro intracelular, por lo que Fur es un regulador positivo indirecto (Tobe *et al*, 2014).

Tabla 7: Factores de virulencia	a con posibles secu	uencias fur-box.
---------------------------------	---------------------	------------------

Procesos	Factores de virulencia	Genes
	ECP	ykgK/ecpR
Adherencia		yagX/ecpC
	Eimhrie de tine 1	fimA
	Fillibria de upo 1	fimI
Autotransportador	EspP	espP
		espA
		sepL
		cesT
		sepQ/escQ
	SST3	escP
		escV
		escU
		escT
Sistemas de secreción		escS
		escR
		espF
		tir
		тар
	Efectores secretados por el SST3	nleA/espI
		espL2
		espM2
		espR3

		espR4
		espX6
		nleG
		nleH1
		nleH2
		hlyD
Exotoxinas	Hemolisinas	hlyE/clyA
Adquisición de hierro	Chu	chuA
Regulador	Ler	ler

4.1.2. Anotación funcional

En cuanto a la segunda etapa, se realizó una anotación funcional de los genes predichos en la primera etapa mediante la base de datos *Clusters of Orthologous Genes* (COGs) (Galperin *et al*, 2015) y el programa Blast2Go (Conesa *et al*, 2005). A raíz de estas se realizó una predicción de los procesos biológicos que participan estos genes que podrían ser regulados por Fur en cada cepa (**Figura 13**). Podemos ver que el regulón Fur podría participar principalmente en los siguientes procesos biológicos de Rafaela II: secreción, tráfico intracelular y transcripción. Sin embargo, cabe destacar que el 32,4% de las proteínas analizadas son de función desconocida. Por otro lado, los principales procesos biológicos en los que Fur podría estar involucrado en K-12 son: metabolismo y transporte de carbohidratos y transcripción. Igualmente, K-12 también cuenta con una alta cantidad de proteínas de función desconocida que son reguladas por Fur.

4.1.3. Predicción de islas genómicas y secuencias de fagos en el genoma de la cepaE. coli O157:H7 Rafaela II

La tercera etapa consistió en evaluar si los genes predichos con secuencia fur-box en Rafaela II podrían estar ubicados en islas genómicas o en regiones de fagos. Para eso, se utilizaron los programas: PHASTER (*PHAge Search Tool Enhanced Release*) (Arndt *et al*, 2016), un servidor web para la rápida identificación y anotación de secuencias de profagos

dentro de genomas bacterianos y plásmidos; y GIPSy (*Genomic island prediction software*) (Soares *et al*, 2016), un programa para la predicción de islas genómicas.

Mediane PHASTER, se predijeron 20 secuencias de fagos en el genoma de *E. coli* O157:H7 Rafaela II de los cuales: 13 regiones se encuentran intactas, 5 regiones están incompletas y 2 regiones son cuestionables. Entre los fagos identificados, 51 genes de 427 genes con predicción positiva para regiones fur-box de Rafaela II se encuentran localizados en ellos (**Tabla 8**). Mediante GIPSy se predijo que 109 genes de 427 genes con predicción positiva para regiones fur-box de Rafaela II se encuentran distribuidos en 41 islas genómicas, donde: 97 genes se encuentran distribuidos en 28 islas de patogenicidad; 19 genes se encuentran distribuidos en 5 islas simbióticas; 10 genes se encuentran distribuidos en 3 islas metabólicas; y 21 genes se encuentran distribuidos en 5 islas de resistencia (**Tabla 8**). Del total de los genes, 28 se encuentran presentes en más de un tipo de isla de patogenicidad y 43 genes también se encuentran presentes en fagos.

Gen ID	N° Fago	Isla Genómica	Nombre del gen	Descripción
XF37_RS00075	N/A	IPA	faeE	Fimbrial chaperone
XF37_RS00080	N/A	IPA	fimC	Fimbrial chaperone protein
XF37_RS00460	N/A	IPA		Hypothetical protein
XF37_RS00485	N/A	IPA	ler	L0054
XF37_RS00510	N/A	IPA	escR	Type III secretion system LEE export apparatus protein escr
XF37_RS00515	N/A	IPA	escS	Type III secretion system LEE export apparatus protein escs
XF37_RS00520	N/A	IPA	escT	Type III secretion system LEE export apparatus protein esct
XF37_RS00525	N/A	IPA	escU	Type III secretion system LEE export apparatus protein escu
XF37_RS00535	N/A	IPA	UN86_14415	Negative regulator grlr
XF37_RS00540	N/A	IPA	grlA	Transcriptional regulator grla

Tabla 8: Localización de genes con predicción positiva para regiones fur-box exclusivos de Rafaela II. Anotación estructural según su localización en fagos o en islas genómicas donde: (IPA) islas de patogenicidad; (ISA) islas simbióticas; (IMET) islas metabólicas; y (IR) islas de resistencia.

XF37_RS00595	N/A	IPA	escP	Type III secretion system LEE needle length regulator escp
XF37_RS00600	N/A	IPA	sepQ	Type III secretion system LEE sepq regulator
XF37_RS00620	N/A	IPA	tir	Translocated intimin receptor Tir
XF37_RS00625	N/A	IPA	cesT	Tir chaperone
XF37_RS00640	N/A	IPA	sepL	Type III secretion system LEE sepl protein
XF37_RS00645	N/A	IPA	espA	Type III secretion system LEE translocon filament protein espa
XF37_RS00675	N/A	IPA	espF	Espf T3SS effector protein
XF37_RS04935	N/A	IPA&ISA	invF	Arac family transcriptional regulator
XF37_RS04955	N/A	IPA&ISA	spaL	Type III secretion system protein
XF37_RS04965	N/A	IPA&ISA		Hypothetical protein
XF37_RS04970	N/A	IPA&ISA		Hypothetical protein
XF37_RS04975	N/A	IPA&ISA	epaO	Type III secretion apparatus pro- tein, yscq/hrcq family
XF37_RS04985	N/A	IPA&ISA	epaQ	Escs/yscs/hrcs family type III se- cretion system export apparatus protein
XF37_RS04995	N/A	IPA&ISA	spaS	Escu/yscu/hrcu family type III secretion system export appa- ratus switch protein
XF37_RS05015	N/A	IPA&ISA	prgI	Type III secretion system needle complex protein
XF37_RS06095	2	IPA	KPK_4437	Site-specific recombinase, phage integrase family
XF37_RS06100	2	IPA	KPK_4436	Site-specific recombinase, phage integrase family protein
XF37_RS06110	2	IPA	Z3941	Hypothetical protein
XF37_RS06115	2	IPA		Hypothetical protein
XF37_RS06215	2	IPA	espM2	Espm2 T3SS effector protein
XF37_RS07530	3	N/A		Hypothetical protein
XF37_RS07715	3	N/A		Hypothetical protein
XF37_RS07725	3	N/A	cro_2	Helix-turn-helix domain-con- taining protein
XF37_RS07750	3	N/A	endY	Endy protein
XF37_RS07855	3	N/A		Hypothetical protein

Página 59 de 162

XF37_RS09120	4	IPA	ybcK	Uncharacterized protein ybck
XF37_RS09125	4	IPA	ybcL	UPF0098 protein ybcl
XF37_RS09205	4	IPA		DUF826 domain-containing pro- tein
XF37_RS09240	4	IPA	ASE93_15395	DUF1441 family protein
XF37_RS09265	4	IPA		DUF2190 family protein
XF37_RS09555	5	N/A	ECPG_00708	Hypothetical protein
XF37_RS09620	5	IPA	JEONG1266_058 95	AAA family atpase
XF37_RS09695	5	IPA	V	Phage baseplate assembly pro- tein V
XF37_RS09765	5	IPA	NBO_288g0002	Phage tail protein
XF37_RS10010	N/A	ISA, IMET & IR	wbhA	Glycosyl transferase
XF37_RS10015	N/A	ISA, IMET & IR	wzy	O-antigen polymerase
XF37_RS10020	N/A	ISA, IMET & IR	wbdO	Glycosyl transferase
XF37_RS10025	N/A	ISA, IMET & IR	wzx	O157 family O-antigenflippase
XF37_RS10055	N/A	ISA, IMET & IR	manC2	Mannose-1-phosphate guan- ylyltransferase 2
XF37_RS10070	N/A	ISA, IMET & IR	perB	GDP-perosamine N-acetyltrans- ferase
XF37_RS10415	6	IPA		DUF826 domain-containing pro- tein
XF37_RS10510	6	IPA		Phage tail assembly chaperone
XF37_RS10560	6	IPA	J	Tip attachment protein J
XF37_RS10845	7	IPA		Hypothetical protein
XF37_RS10880	7	IPA		Hypothetical protein
XF37_RS10885	7	IPA		Dtdp-6-deoxy-L-hexose 3-O- methyltransferase
XF37_RS10940	7	IPA	Z2107	Membrane protein
XF37_RS11005	7	IPA	FP66_04520	Terminase small subunit
XF37_RS11585	8	IPA	SA- MEA2273425_01 717	DUF2511 domain-containing protein
XF37_RS13505	9	IPA	Z2107	Membrane protein
XF37_RS13615	9	IPA		Phage tail
	-			

XF37_RS15330	10	N/A	intE	Prophage e14 integrase
XF37_RS15365	10	IPA	nleG	T3SS effector E3 ubiquitin-pro- tein ligase nleg
XF37_RS15375	N/A	IPA		Hypothetical protein
XF37_RS15420	11	IPA	nleA	Non-LEE-encoded type III ef- fector, nlea
XF37_RS15545	11	IPA		Ylci/ynfo family protein
XF37_RS15560	11	IPA		Hypothetical protein
XF37_RS15715	11	IPA		DUF1482 family protein
XF37_RS15730	11	IPA	intE	Prophage e14 integrase
XF37_RS16265	N/A	IPA	ybcY	SAM-dependent methyltransfer- ase
XF37_RS16270	N/A	IPA	yciG	General stress protein
XF37_RS16420	12	IPA	bor	Lipoprotein bor
XF37_RS16745	14	IPA	mnt	Phage regulatory protein
XF37_RS16850	14	IPA		Hypothetical protein
XF37_RS17000	14	IPA	racR	Rac prophage repressor
XF37_RS17025	14	IPA	intE	Prophage e14 integrase
XF37_RS17550	N/A	IPA		Hypothetical protein
XF37_RS17625	N/A	IPA		Hypothetical protein
XF37_RS17640	15	IPA	fhuE	Iha adhesin
XF37_RS17685	15	IPA	carB_2	ATP-grasp domain-containing protein
XF37_RS17710	15	IPA	SA- MEA2273122_05 069	Hypothetical protein
XF37_RS17820	N/A	IPA		Hypothetical protein
XF37_RS17825	N/A	IPA	eptA	Phosphoethanolamine transfer- ase
XF37_RS17840	N/A	IPA	bcgIB	Restriction enzyme subunit beta
XF37_RS18025	N/A	IPA	hifA	Fimbrial protein
XF37_RS18030	N/A	IPA	mrkB	Chaperone protein (Involved in the expression of type III fim- briae) mrkb
XF37_RS18060	N/A	IPA	SFK227_0632	Hypothetical protein

Página 61 de 162

XF37_RS18485	N/A	IPA	ybcY	Class I SAM-dependent methyl- transferase
XF37_RS18490	N/A	IPA	yciG	Stress-induced bacterial aci- dophilic repeat motifs-containing protein ycig
XF37_RS18670	N/A	IPA		Hypothetical protein
XF37_RS18805	17	IPA	iroE	Alpha/beta hydrolase
XF37_RS18900	17	N/A	yccA	Ftsh protease modulator ycca
XF37_RS20095	18	IPA		Hypothetical protein
XF37_RS20110	18	IPA	ECs0817	Hypothetical protein
XF37_RS20425	N/A	ISA, IMET & IR		Hypothetical protein
XF37_RS20450	N/A	ISA, IMET & IR	MOC_0568	Putative 3-methylaspartate am- monia-lyase, glutamate mutase
XF37_RS20460	N/A	ISA, IMET & IR	gltP	Proton/glutamate symporter
XF37_RS21535	N/A	IPA, ISA & IR	aatB	Yada family autotransporter ad- hesin
XF37_RS22365	N/A	ISA & IMET	prpR	Propionate catabolism operon regulatory protein
XF37_RS22515	N/A	IPA & IR	tibA	Putative autotransporter
XF37_RS22560	N/A	IPA & IR	rclC	Inner membrane protein rclc
XF37_RS22595	N/A	IPA & IR	frsA	Alpha/beta hydrolase
XF37_RS22600	N/A	IPA & IR	nerA	NADH-dependent flavin oxi- doreductase
XF37_RS22640	N/A	IPA & IR	ecpR	ECP biosynthesis operon DNA- binding transcriptional regulator ecpr
XF37_RS22655	N/A	IPA & IR	ecpC	Fimbrial usher ecpc
XF37_RS22730	N/A	IPA & IR		Hypothetical protein
XF37_RS22760	N/A	IPA & IR	EbC_44550	Septation initiation protein
XF37_RS22885	19	IPA & IR		Transcription antitermination protein
XF37_RS23080	N/A	IPA	tssB	Type VI secretion system con- tractile sheath small subunit tssb
XF37_RS23100	N/A	IPA	tssF	Type VI secretion system baseplate subunit tssf
XF37_RS23160	N/A	IPA		Hypothetical protein
XF37_RS23165	N/A	IPA		Hypothetical protein

XF37_RS24620	N/A	IR	pipB2	Pentapeptide repeat-containing protein
XF37_RS24635	N/A	IR	yeeJ	Hypothetical protein
XF37_RS24800	N/A	IPA	SA- MEA2273397_03 124	Apolipoprotein A1/A4/E domain
XF37_RS24845	N/A	IPA		Hypothetical protein
XF37_RS26065	20	IPA		Hypothetical protein

4.2. Evaluación del perfil de crecimiento de *E. coli* O157:H7 en diferentes disponibilidades de hierro

Para evaluar los efectos de la biodisponibilidad de hierro en el crecimiento de *E. coli* O157:H7 Rafaela II se trazaron curvas de crecimiento comparando los cultivos en medio LB (control) y en LB a distintas biodisponibilidades de hierro. Se utilizaron diferentes concentraciones (200 μ M, 250 μ M y 300 μ M) del quelante de hierro BPD para limitar la disponibilidad de este metal en el medio de cultivo. En este ensayo, se pudo observar que, al limitar el hierro en el medio, el perfil de crecimiento de Rafaela II disminuyó significativamente respecto al control (**Figura 14**). Por lo que el hierro es requerido para el correcto crecimiento de la bacteria.

Figura 14: El hierro contribuye para el crecimiento de *E. coli* **O157:H7.** Curvas de crecimiento de la cepa Rafaela II en el medio de crecimiento LB y el medio de crecimiento LB suplementado con (**A**) 200μM, (**B**) 250μM, (**C**) 300μM del quelante de hierro BPD.

4.3. Evaluación de la disponibilidad de hierro en la expresión de genes relacionados a la patogénesis de *E. coli* O157:H7

Los genes involucrados en las vías de virulencia y patogenicidad de la bacteria se encuentran en las islas de patogenicidad y el plásmido pO157 que se encuentran presentes en O157:H7 y no en K-12. Como bien fue mencionado, aún hay poca información sobre su regulación, por lo que se procedió a evaluar si la biodisponibilidad del hierro en el medio afecta a la expresión de genes que participan tanto en la virulencia y patogenicidad de la bacteria como en su fisiología general. Para esto se seleccionaron, de los genes predichos en el análisis bioinformático que contienen secuencias fur-box en su región promotora, los genes stcE (factor

de virulencia) que está ubicado en el plásmido pO157 y *fliC* (gen involucrado en la fisiología bacteriana) para realizar un análisis de expresión génica mediante RT-qPCR de la cepa Rafaela II en un medio LB (rico en hierro) y LB más 300µM de BPD (pobre en hierro).

En este ensayo, se vio que la expresión del gen *stcE* se encuentra regulada por la biodisponibilidad del hierro en el medio, donde fue observado que a mayor biodisponibilidad de hierro menor fue su expresión, mientras que al limitar el hierro en el medio su expresión aumentó significativamente (**Figura 15**). El gen *stcE* codifica para una metaloproteasa codificada en el plásmido pO157 la cual es secretada por el SST2 y es la encargada de escindir el inhibidor de la serina proteasa C1 del sistema de complemento (C1-INH) (Lathem *et al*, 2002). C1-INH, actúa formando un complejo con las proteínas C1 y C1r2s2 haciendo que se disocien de C1q y evitando así la activación de C4 y C2, inhibiendo así el inicio de la vía de complemento tanto clásica como de la lecitina (Owen *et al*, 2014). La bacteria, al secretar StcE y escindir C1-INH, va a inhibir el sistema del complemento del huésped. Con respecto al gen *fliC* que codifica para la flagelina, se vio que su expresión se encuentra aumentada en condiciones repletas de hierro. La flagelina es requerida para la motilidad de *E. coli* O157:H7 cumpliendo un rol importante en su proceso de infección. Además de eso, esta flagelina juega un papel importante en la colonización debido a que forman uniones con las células epiteliales intestinales, contribuyendo para el proceso de adhesión bacteriana (Andreozzi & Uhlich, 2020).

Figura 15: Análisis de la expresión génica mediante RT-qPCR a distintas biodisponibilidades de hierro. RTq-PCR del gen *stcE* y *filC* de *E. coli* O157:H7 Rafaela II en medio LB y LB +300 μ M de BPD. *P*-value fue calculado utilizando el *unpaired t-test* seguido por el *welch'scorrection test.* *, *p* < 0.05; **, p < 0.01

4.4. Generación de la cepa mutante E. coli O157:H7 Δfur

Considerando que la homeostasis del hierro en la bacteria es regulada por el regulón *fur*, que en otras bacterias patogénicas se vio que tiene un rol en la patogenicidad de las mismas (sección 1.3.5.), y que en las secciones 4.2 y 4.3 se pudo observar que el hierro tiene un papel en el crecimiento de *E. coli* O157:H7 y en la expresión de genes involucrados en la patogénesis de *E. coli* O157:H7; se procedió a realizar la cepa mutante *E. coli* Rafaela II Δfur para evaluar la participación de *fur* en la patofisiología de la bacteria.

4.4.1. Generación del amplicón para mutagénesis

La reacción de PCR para generar el amplicón que se utilizó para el reemplazo alélico del gen *fur* se llevó a cabo utilizando los cebadores descriptos en la Tabla 4 utilizando como templado el plásmido pKD3. A través de este ensayo fue posible amplificar un fragmento de DNA de aproximadamente 1.050 pb que fue visualizado en un gel de agarosa de 0,8% (**Figura 16**). Luego este producto de amplificación fue purificado, cuantificado y resuspendido en agua libre de DNAsa.

Figura 16: Amplificación del caset de resistencia a cloranfenicol del plásmido pKD3. (M) 100bp Plus DNA Ladder; (1) amplificación del caset de resistencia a cloranfenicol con los oligonucleótidosFw-fur-P1 y Rv-fur-P2; y (2) control negativo de la reacción de PCR.

4.4.2. Transformación de la cepa E. coli O157:H7 pKD46 con el amplicón para mutagénesis

Con el propósito de realizar un *knock-out* del gen *fur* y reemplazar el mismo por un caset de resistencia a cloranfenicol, se indujo el sistema λ Red y se transformó mediante electroporación la cepa Rafaela II R46 con el amplicón para mutagénesis generado en la sección 4.4.1. La mutagénesis fue verificada mediante *colony* PCR utilizando dos sets de oligonucleótidos: rio arriba y rio debajo del gen *fur* (Up-Fur & Down-Fur), y específicos del gen *fur* (Fw-fur & Rv-fur) (**Tabla 4**) (**Figura 17**). Teniendo en cuenta que el casete de resistencia a clorafenicol (1.053 pb) es mayor que el gen *fur* (447 pb), se observa en la figura 20 que la amplificación con oligonucleótidos Up-Fur y Down-Fur generó en la cepa Rafaela II salvaje (calle 1) y la cepa Rafaela II Δfur (calle 2), fragmentos de DNA con aproximadamente 800 pb y 1.380 pb respectivaamente. A su vez, en las amplificaciones utilizando los oligonucleótidos específicos de la locación del gen *fur*, podemos ver que en la calle 4 se observa la amplificación del gen *fur*, mientras que en la calle 5 no se observa una amplificación. En conjunto estos resultados muestran que el gen *fur* a sido escindido y reemplazado por el caset

Figura 17: Verificación de la mutagénesis del gen *fur* en *E. coli* Rafaela II. (M) 100bp Plus DNA Ladder; (1) Rafaela II salvaje con oligonucleótidos rio arriba y rio debajo de *fur*; (2) Rafaela II Δfur con oligonucleótidos rio

arriba y rio debajo de *fur*; (3) control negativo con oligonucleótidos rio arriba y rio debajo de *fur*; (4) Rafaela II salvaje con oligonucleótidos específicos de *fur*; (5) Rafaela II Δfur con oligonucleótidos específicos de *fur*; y (6) control negativo con oligonucleótidos específicos de *fur*.

4.5. Complementación de la cepa mutante Δ*fur*

La complementación de la cepa mutante con el gen *fur* fue realizada en dos etapas. Primero la amplificación de la región intergénica entre el gen *fldA* y *fur* más el gen *fur* (interfur), y su clonado en el vector pGEM-T *easy*. Luego, la realización de un subclonado de la región inter-fur en el vector pLF y la transformación mediante electroporación de la cepa Rafaela II Δfur con la construcción generada.

4.5.1. Generación del inserto inter-fur

Para amplificar la región inter-fur (*fur* más su región promotora), primero se localizó la secuencia de *fur* y la región intergénica entre *fur* y *fldA* (gen rio arriba de *fur*) mediante el programa Artemis (Carver T, 2012) (**Figura 18A**). La secuencia intergénica con 287 pb fue sometida a un análisis de predicción de regiones promotoras utilizando el programa BPROM de la plataforma Softberry. De acuerdo con este análisis *in silico*, fue detectado la secuencia ATAATGAT que corresponde a la región promotora Fur-Box (**Figura 18B**). En la figura 18C vemos la secuencia completa del espació intergénico entre el gen *fldA* y *fur*, además de la secuencia Fur-box.

Figura 18: Identificación de la región promotora de *fur***.** (A) identificación de la región intergénica entre *fur* y fidA + fur (región amarilla) mediante el programa Artemis; (B) predicción de la región promotora mediante el programa Softberry; y (C) secuencia de la región intergénica (naranja), el promotor predicho (rojo) y el gen *fur* (azul).

Luego se diseñaron los oligonucleótidos Fw-FurCF y Rv-FurCR (**Tabla 4**) para la posterior amplificación de inter-fur. Se realizó una rección de PCR utilizando los primers mencionados y el DNA genómico de la cepa Rafaela II como templado. El producto de amplificación fue cuantificado y analizado en un gel de agarosa el 0,8% (**Figura 19**). En la calle 1 se observan bandas tenues correspondientes a amplificaciones inespecíficas y una banda de mayor intensidad de aproximadamente 734 pb correspondiente a inter-fur. El fragmento de mayor intensidad fue purificado y cuantificado.

Figura 19. Amplificación del gen *fur* + **su región promotora por PCR**. (**M**) 100bp Plus DNA Ladder (**1**) amplificación con los oligonucleótidos Fw-FurCF y Rv-FurCR; (**2**) Control de la reacción de PCR sin templado utilizando los oligonucleótidos Fw-FurCF y Rv-FurCR.

4.5.2. Generación del plásmido pGfurC

El producto de amplificación fue purificado, cuantificado y clonado en el vector pGEM-T easy obteniendo así el plásmido pG*fur*C. Luego, el plásmido pG*fur*C fue transformado en la cepa DH5 α y secuenciado. Los resultados obtenidos mediante el ensayo de secuenciación mostraron que el fragmento clonado en el vector pGEM-T corresponde a la región inter-fur.

Tras la transformación se obtuvieron 8 clones positivos. Se realizó una purificación del plásmido pG*fur*C y se confirmó la integridad del inserto *inter-fur* mediante PCR con los oligonucleótidos Fw-FurCF y SP6. Del total de los clones, solo en el clon 4 (calle 4) se observó una banda correspondiente a la esperada de 734 pb de la secuencia *inter-fur* (**Figura 20**). A través de la secuenciación del pG*furC* extraído del clon 4 pudimos verificar la integridad del inserto inter-fur clonado en el vector pGEM-T easy.

Figura 20: Verificación por PCR del clonado de inter-fur en pGEM-T easy. (M) 100bp Plus DNA Ladder (**1-8**) amplificación con oligonucleótidosFw-FurCF y SP6 de los clones 1 a 8.

4.5.3. Generación del plásmido pLFfurC y transformación de la cepa tipo mutante de E. coli O157:H7 Δfur

En la segunda etapa se realizó un subclonado de *inter-fur* en el vector pLF. Para llevarlo a cabo, se realizó la digestión del plásmido pG*fur*C y el vector pLF con las enzimas de restricción BamHI y SpeI (**Figura 21**). Los resultados de la digestión fueron purificados, cuantificados y ligados obteniendo así la construcción pLF*fur*C.

Figura 21: Digestión de del plásmido p*Gfur***C y el vector pLF. (1)** vector pLF digerido; (2) vector pLF sin digerir; (M1) 1000bp Plus DNA Ladder; (M2) 100bp Plus DNA Ladder; p*Gfur***C sin digerir; y (3)** p*Gfur***C digerido.**

El plásmido pLF*furC* fue transformado en la cepa DH5 α y se obtuvieron 20 colonias. Se seleccionaron 5 colonias para la realización de una reacción de PCR utilizando los oligonucleótidos Fw-FurCF y Rv-FurCR. En las calles 1 a 5 podemos observar la amplificación del inserto *inter-fur* correspondientes a la banda esperada de 734 pb (**Figura 22**).

Figura 22: Verificación por PCR del clonado de *inter-fur* **en pLF.** (**M**) 100bp Plus DNA Ladder; (**C**-) control negativo; (**C**+) control positivo; (**1-5**) amplificación con oligonucleótidosFw-FurCF y Rv-FurCRde los clones 1 a 5.

Una vez obtenido el plásmido pLF*fur*C, se procedió a transformar la cepa Δfur para obtener así la cepa mutante complementada con la secuencia *inter-fur*. La mutante fue transformada mediante electroporación y los clones positivos fueron seleccionados en placas de LB suplementado con Ampicilina 100 μ M.

4.6. Evaluación del perfil de crecimiento de *E. coli* O157:H7 Δfur , $\Delta fur/pFurC$ y $\Delta fur/pLF$ en diferentes biodiponibilidades de hierro

Ya fue observado que la biodisponibilidad de hierro afecta al crecimiento de la cepa *E*. *coli* O157:H7 Rafaela II, por lo que se propuso observar a través del perfil de crecimiento de las cepas mutantes de *E. coli* O157:H7 (Δfur , $\Delta fur/pFurC$ y $\Delta fur/pLF$) si *fur* también cumple un rol en el crecimiento de la bacteria. Para esto, se trazaron curvas de crecimiento de las cuatro cepas comparando los cultivos en medio LB (control) y en LB+ 300 µM del quelante de hierro BPD para limitar la disponibilidad de este metal en el medio de cultivo (**Figura 23**).
En este ensayo se pudo observar que tanto la mutación del gen *fur*, como la limitación de biodisponibilidad de hierro en el medio, afectó el perfil de crecimiento de *E. coli* O157:H7 debido a que al limitar el hierro en el medio se vio una disminución de la curva de crecimiento en las cuatro cepas. A su vez, la mutante Δfur tuvo un crecimiento menor que la cepa Rafaela II en todas las condiciones, el decrecimiento se vio restablecido al complementar la mutante con el gen *fur* ($\Delta fur/pFurC$). Por otro lado, el ensayo fue realizado con la cepa $\Delta fur/pLF$ la cual cuenta con el vector pLF sin el inserto *inter-fur* para comprobar que este no esté afectando al crecimiento. En los resultados se pudo observar que el vector pLF no interfiere en el crecimiento bacteriano.

Figura 23: Análisis del perfil de crecimiento de *E. coli* O157:H7 y la cepa isogénica Δfur . Curvas de crecimiento de las cepas Rafaela II (salvaje), Δfur , $\Delta fur/pFurC$ y $\Delta fur/pLF$ ante el medio de crecimiento LB y el medio de crecimiento LB suplementado con 300µM de BPD.

4.7. Análisis proteómico comparativo cuantitativo

Para evaluar los efectos del *knock-out* del gen *fur* y la biodisponibilidad de hierro en el proteoma de *E. coli* O157:H7, se realizó un análisis proteómico comparativo cuantitativo mediante la estrategia de marcación TMT, a partir del lisado bacteriano total. Primeramente, las muestras proteicas obtenidas a partir del cultivo de *E. coli* O157:H7 Rafaela II salvaje

crecida en medio LB y LB + 300 μ M de BPD, y *E. coli* O157:H7 Δfur crecida en medio LB fueron sembradas en un gel SDS-Page al 12% para verificar la integridad de estas (**Figura 24**).

Figura 24: Verificación de la integridad de las extracciones proteicas mediante SDS-Page 12%. (M) Blue Plus® ProteinMarker (14-100 kDa); (1, 2 y 3) cepa salvaje en medio LB; (4, 5 y 6) cepa salvaje en medio LB + 300μ M de BPD; y (7, 8 y 9) cepa Δfur .

Luego, de verificar la calidad de las muestras proteicas, las mismas fueron digeridas con tripsina, marcadas con isotopos estables utilizando el kit TMT-16Plex (Thermo Fisher) y sometidas a un análisis por espectrometría de masas. En este análisis proteómico comparativo entre Rafaela II crecida en condiciones ricasen hierro (LB) y pobreen hierro (LB+BPD), como entre Rafaela II y su mutante isogenica Δfur fueron identificadasel 46,12% (2725/5908) del total de proteínas predichas en el genoma de *E. coli* O157:H7. Todas las proteínas identificadas superaron el filtro de *False Discovery Rate* (FDR) del 1%. Las proteínas que presentaron un valor de *p*<0,05 según Test Mann Whitney y un *fold change* log2>1,2 (equivalente a 2,3) fueron consideradas con una expresión diferencial estadísticamente significativa.

A partir de estos criterios, un total de 371 proteínas presentaron una expresión diferencial estadísticamente significativo entre Rafaela II crecida en LB+BPD y LB; del total de proteínas expresadas diferencialmente, 166 fueron más abundantes y 205 fueron menos abundantes en la condición LB + BPD respecto a LB. Por otro lado, 266 proteínas presentaron una expresión diferencial entre Δfur y Rafaela II (**Figura 25**); del total, 197 fueron más abundantes y 169 fueron menos abundantes en la cepa Δfur respecto a Rafaela II (**Figura 25**).

Figura 25: Análisis de expresión diferencial por HeatmapsPlot top 300. (A) Rafaela II salvaje en medio LB + 300 μ M BPD y salvaje en medio LB por triplicado; (B) Rafaela II Δfur y salvaje en medio LB por triplicado.

A su vez, al comparar las proteínas expresadas diferencialmente en Rafaela II LB + BPD versus LB, y Δfur versus Rafaela II (salvaje), se observó que 269 proteínas fueron expresadas diferencialmente de igual manera en ambos experimentos, 102 proteínas fueron

exclusivas del experimento Rafaela II LB + BPD versus LB y 97 proteínas diferencias fueron exclusivas de Δfur versus Rafaela II (**Figura 26**). Esto se debe a que la cepa mutante y la condición de la cepa salvaje + BPD se comportan de manera similar dado a que al limitar el hierro en el medio Fur se encuentra en su conformación inactiva semejándose a la cepa mutante en donde Fur no se encuentra presente.

Figura 26: Análisis comparativo entre las proteínas diferencialmente reguladas entre los dos ensayos experimentales Rafaela II LB+PBD vs LB y Δfur vs Rafaela II (salvaje). (A) diagrama de venn muestra la distribución de las proteínas diferencialmente reguladas entre Rafaela II LB+PBD vs LB y Δfur vs Rafaela II (salvaje); (B) representación del número de proteínas más o menos abundante que fueron detectadas en ambos experimentos o exclusivo de cada condición experimental. Verde = número de proteínas más abundantes rojo = proteínas menos abundantes.

Para poder identificar a qué procesos biológicos podrían estar involucradas las proteínas que fueron diferencialmente reguladas en ambas condiciones experimentales, se realizó una anotación funcional de estas proteínas. Esta predicción fue realizada utilizando Blast2Go (Conesa *et al*, 2005) y el análisis de enriquecimiento fue hecho con el programa GOATOOLS (Klopfenstein *et al*, 2018).

Al limitar la biodisponibilidad de hierro de la cepa Rafaela II se observó que, entre los procesos biológicos más enriquecidos listados en la figura 27, se encuentran procesos involucrados en el proceso de patogénesis de *E. coli* O157:H7 como: la respuesta al estrés, movimiento celular, respuesta a estímulos y transporte. Por lo tanto, en este análisis se ve que,

al exponer a la bacteria en una condición de estrés nutricional por la limitación de hierro en el medio, las proteínas que se encuentran asociadas a procesos biológicos ligados a la virulencia y patogenicidad de la bacteria se vieron estadísticamente sobreexpresadas a diferencia de su condición control. Al comparar los procesos biológicos relacionados con las proteínas que fueron sobreexpresadas en la cepa mutante Δfur a diferencia de Rafaela II, observamos que 13 de 15 vías enriqueciditas fueron las mismas que en la condición Rafaela II en LB + BPD vs LB (**Figura 28**).

GO Bar Plot (Level2, BP, WT_BPD_vs_WT)

Figura 27: Análisis de enriquecimiento de términos GO de las proteínas diferencialmente expresadas en *E. coli* O157:H7 Rafaela II LB+BPD vs LB.

Figura 28: Análisis de enriquecimiento de términos GO de las proteínas diferencialmente expresadas en *E. coli* O157:H7 Rafaela II Δ*fur vs Rafaela II*.

La semejanza de estos resultados se debe a que del total de las proteínas sobreexpresadas en la condición Rafaela II en LB + BPD y en Δfur , un 76,25% y un 70,36% de estas respectivamente, fueron las mismas proteínas por lo que los mismos procesos se vieron promovidos en ambas condiciones. Igualmente, también se observaron vías que no fueron enriquecidas en ambos análisis comparativos. Entre las vías enriquecidas diferencialmente, en el análisis comparativo entre Rafaela II en LB + BPD vs LB, se encuentra el proceso metabólico de sustancias orgánicas, de compuestos nitrogenados y la detección de estímulos; mientras que entre en Δfur vs Rafaela II se encontraron enriquecidas la respuesta a estímulos generada por antibióticos y el mantenimiento de la localización.

El análisis de predicción de secuencias fur-box en regiones promotoras y de anotación estructural para predecir la locación de genes en fagos o islas genómicas como descriptos en la sección 4.1 también fue realizado en las proteínas expresadas diferencialmente (Anexo II). Del total de proteínas expresadas diferencialmente en Rafaela II en LB + BPD vs LB, 40 de ellas

cuentan con una secuencia fur-box en su región promotora de las cuales solo 1 de ellas se encuentra localizada en un fago parte de una isla de patogenicidad, y en total 3 de ellas se encuentran en islas de patogenicidad. En cuanto a las proteínas expresadas diferencialmente en Δfur vs Rafaela II, 39 de ellas cuentan con la secuencia fur-box en su región promotora de las cuales 3 de ellas se encuentran localizadas en fagos que forman parte de una isla de patogenicidad, y solo una de ellas se encuentra localizada en una isla genómica considerada isla simbiótica, metabólica y de resistencia.

4.8. El gen *fur* contribuye a la adhesión de *E. coli* O157:H7 a células epiteliales

La adherencia es el primer paso de la infección de EHEC. La importancia de este paso reside en que (1) la adherencia es el primer contacto entre las bacterias y las células intestinales, sin esta los otros pasos no pueden ocurrir, y (2) la adherencia es la base de la especificidad del huésped para muchos patógenos (Bardiau, 2010). La adhesión a las células epiteliales está dada por la participación de distintos tipos de adhesinas, y su expresión puede ser alterada por las distintas señales ambientales como la concentración de hierro, epinefrina y norepinefrina (Bansal *et al*, 2007), bicarbonato (Abe *et al*, 2002), magnesio (Liu *et al*, 2020), y ante la respuesta inflamatoria del huésped (Xue *et al*, 2014). En el presente estudio se demostró que el gen *fur* está involucrado en la capacidad de *E. coli* O157:H7 a adherirse a células epiteliales HCT-8. En este ensayo se observó que al escindir el gen *fur*, la adhesión a las células epiteliales disminuyó significativamente a diferencia de la cepa Rafaela II. A su vez, al complementar la cepa mutante con el gen *fur*, la adhesión a las células epiteliales se recompuso obteniendo así resultados similares a la cepa salvaje (**Figura 29**).

Figura 29: El gen *fur* es está involucrado en el proceso de adhesión de *E. coli* O157:H7 a células intestinales epiteliales. Recuento de las UFC/mL de Rafaela II (salvaje), Δfur y $\Delta fur/pFurC$ luego de la lisis de las células epiteliales con Triton X-100 0.15% a las 4 hspost-infección. La significancia estadística se determinó mediante One-way ANOVA, seguido del Tukey'sMultipleComparison Test. *, p < 0,05.

Para ampliar nuestro conocimiento acerca de la relación de *fur* con el proceso de adhesión de *E. coli* O157:H7 se realizó una correlación entre los datos obtenidos con PRODORIC (sección 4.1.1) y el análisis proteómico (sección 4.7.). En el análisis por PRODORIC se predijo que 5 de las adhesinas codificadas por *iha*, *ecpR*, *ecpC*, *fimA* y *lpfA2* cuentan con la secuencia fur-box en su región promotora. En el análisis proteómico las siguientes adhesinas FimA, FimC y FimD, fueron menos abundante en la cepa Rafaela crecida en medio LB + 300 μ M de BPD y en la cepa Δfur al compararlas con la cepa Rafaela II crecida en medio LB. Por otro lado, IrdA (codificado por *iha*) fue expresado diferencialmente únicamente en la cepa Δfur al compararla con la cepa Rafaela II crecida en medio LB donde mostró una sobreexpresión.

Estos análisis, sugieren que FimA podría ser regulado directamente de manera positiva por Fur dado a que esta proteína fue menos abundante en el análisis proteómico tanto al escindir el gen *fur* como al limitar el hierro en el medio (Fur se encuentra en su conformación inactiva), además el análisis *in silico* se predijo que cuenta con una secuencia fur-box en su promotor. Entre los genes predichos con secuencia fur-box en sus promotores se encuentra el gen *lpfA2*,

este resultado coincide con otros estudios realizados en donde fue observado que Fur interactúa directamente con la región fur-box presente en el promotor del gen *lpfA2* (Arenas-Hernández *et al*, 2014). A su vez, también se redijo una secuencia fur-box en *iha*, el cual en el análisis proteómico presentó una sobreexpresión de IrgA ante la ausencia de *fur*, este resultado coincide con los estudios realizados por Rashid *et al*, 2006 donde se probó que Fur es un regulador negativo del gen *iha*. Por otro lado, no se predijeron secuencias fur-box en los promotores de los genes *fimC* y *fimD* identificados que obtuvieron una expresión diferencial menos abundante por lo que estos podrían estar siendo regulados negativamente de manera indirecta por *fur*.

Si bien no todas las adhesinas de *E. coli* O157:H7 fueron identificadas en el análisis proteómico y no todas las identificadas presentaron una expresión diferencial, los resultados obtenidos en la predicción realizada por PRODORIC y la menor expresión de *fimA*, *fimC* y *fimD* observada en el análisis proteómico se complementan con los resultados obtenidos en el análisis funcional en donde ante la ausencia del gen *fur* hubo una disminución de la adhesión de *E. coli* O157:H7 a las células epiteliales. Estos resultados indican la participación del gen *fur* como un regulador positivo de la adhesión de *E. coli* O157:H7 a las células epiteliales. Curiosamente, en otras bacterias patogénicas como *E. coli* uropatogénica se a observado que al escindir el gen *fur* tanto la adhesión a células epiteliales como la expresión de las fimbrias de tipo I (*fimA*, *fimH*, *flhD*, *fliAyfliC*) se vio aumentada mostrando que en *E. coli* uropatogénica *fur* se comporta como un regulador negativo de la adhesión a células epiteliales (Kurabayashi *et al*, 2016).

4.9. El gen *fur* contribuye a la supervivencia de *E. coli* O157:H7 a los macrófagos

Durante el proceso de infección por EHEC, se observa una fuerte respuesta inflamatoria por parte del huésped, y se ha demostrado previamente que las citocinas producidas por los macrófagos infectados contribuyen una respuesta inflamatoria grave asociada con el síndrome urémico hemolítico (van de Kar *et al*, 1992). En el presente trabajo se propuso evaluar la relación de *fur* con la supervivencia de *E. coli* O157:H7 luego de ser fagocitadas por los

macrófagos. Para ello, un cultivo de células de macrófagos murinos RAW264.7 fue infectado con las cepas Rafaela II, Δfur y $\Delta fur/pFur$ C. A través del recuento de UFC/ml, se observó que la mutación del gen *fur* afecto significativamente la capacidad de la cepa bacteriana en resistir la acción de los macrófagos teniendo un decrecimiento significativoaluego las 24 horas post-infección, mientras que la cepa $\Delta fur/pFur$ C tuvo un comportamiento similar a la salvaje (**Figura 30**).

Figura 30: Supervivencia de la *E. coli* O157:H7 luego la incubación con macrófagos. Recuento de las UFC/mL de Rafaela II (salvaje), Δfur y $\Delta fur/pFurC$ luego de la lisis de los macrófagos con Tritón X-100 0.15% a las 2 y 24 hs post-infección. La significancia estadística se determinó mediante One-way ANOVA, seguido del Tukey'sMultipleComparison Test. *, *p*< 0,05.

Hasta el momento hay poca información sobre la interacción entre *E. coli* O157:H7 y los macrófagos. Igualmente, se ha observado que *E. coli* O157:H7 puede sobrevivir a la fagocitosis de los macrófagos humanos. Los mecanismos de supervivencia de la bacteria ante al ataque de los macrófagos identificados son: respuesta SOS al daño del ADN, resistencia al estrés oxidativo, regulación acida intracelular, resistencia al estrés acido (Poirier K. *et al*, 2008). Entre los 24 genes conocidos hasta el momento que se encuentran involucrados en estos mecanismos de supervivencia descriptos por Poirier *et al*, 2008, se predijo mediante PRODOROC (sección 4.1.1.) que 6 de ellos contienen secuencias fur-box en su región promotora. Por otro lado, 12 de ellos fueron identificados en el análisis proteómico, pero solo 3 mostraron una expresión diferencial en la cepa Rafaela II crecida en medio LB + 300 μ M de

BPD y la cepa Δfur a comparación de la cepa Rafaela II crecida en medio LB. Se vio que HmpA, el cual participa en la resistencia al estrés oxidativo, disminuyó su expresión tanto en la condición salvaje en LB + BPD como en la mutante Δfur por lo que se puede considerar que este se encuentra regulado negativamente de manera directa por Fur. En cuanto a las proteínas Zwf (participa en la resistencia al estrés oxidativo) y HdeA (participa en la resistencia al estrés ácido), se vio un aumento de su expresión solo en la condición Rafaela II en LB+BPD mientras que en la mutante no se observó una expresión diferencial significativa al compararla con la cepa Rafaela II en medio LB. A diferencia de Zwf, HdeA se vio sobreexpresado en la cepa mutante pero no en la condición salvaje en LB + BPD. Teniendo en cuenta que *hmpA*, *zwf* y *hdeA* no cuentan con la secuencia fur-box en su región promotora según la predicción realizada por PRODORIC, podemos concluir que los mismos están siendo regulados indirectamente por Fur y la concentración de hierro intracelular.

Dado a que se predijo que genes involucrados en la supervivencia de *E. coli* O157:H7 al ataque de los macrófagos cuentan con secuencias fur-box en su región promotora y que en el ensayo funcional se observó que ante la ausencia del gen *fur* la supervivencia de la bacteria disminuyó significativamente, *fur* es un regulador necesario para la supervivencia de la bacteria al ataque de los macrófagos. Contradictoriamente, los 3 genes que mostraron una expresión diferencial de los 12 identificados, mostraron un aumento de su expresión cuando Fur se encontraba ausente o inactivo.

4.10. Evaluación del rol de *fur* en la resistencia de *E. coli* O157:H7 al estrés ácido

Como fue mencionado previamente, cuando *E. coli* O157:H7 infecta al humano o el bovino, esta va a recorrer el tracto digestivo hasta su sitio de colonización sufriendo distintos tipos de estrés. Entre ellos podemos citar el estrés ácido producido por la acidez gástrica, los ácidos grasos volátiles producidos como resultado de la fermentación en el intestino y en el fagolisosoma de los macrófagos cuando la bacteria es fagocitada.

Para aportar conocimiento a respecto del proceso de resistencia al estrés ácido de este patógeno en el presente estudio evaluamos si el gen *fur* puede estar relacionado a este proceso.

Para eso, se realizó una exposición de las cepas Rafaela II, $\Delta fur y \Delta fur/pFurC$ a un medio LB ácido a un pH de 2,5 y 4,5. Al analizar el porcentaje de supervivencia bacteriano comparando las UFC/ml del tiempo cero con las UFC/ml post-incubación se observó que a un pH de 4,5 la mutante Δfur tuvo un 30,73% de supervivencia mayor que Rafaela II (**Figura 31**).

Figura 31: Supervivencia de la *E. coli* **O157:H7 al estés ácido.** Análisis porcentual de la supervivencia de las cepas Rafaela II (salvaje), $\Delta fur \neq \Delta fur/pFurC$ luego de su incubación en medio LB ácido a pH 2.5 y 4.5. La significancia estadística se determinó mediante Two-way ANOVA, seguido del Bonferroni post hoc tests. **, p < 0,01., ns, no significativo.

En los distintos mecanismos de supervivencia al estrés ácido con los que cuenta *E. coli* O157:H7 participan 17 genes conocido hasta el momento que cuentan con una relación directa a estas funciones, sin embargo, en un análisis de expresión génica se observó un aumento de expresión de genes que se encuentran involucrados en vías no relacionadas a la resistencia al estrés ácido (Arnold *et al*, 2001). En cuanto a los genes relacionados directamente con los mecanismos de supervivencia al estrés ácido, solo en los promotores de *gadA*, *gadB* y *gadX* que son parte del sistema AR 3 (dependiente de arginina) (Castanie-Cornet *et al*, 1999) se reconocieron secuencias fur-box mediante PRODORIC (sección 4.1.1.). Curiosamente, no se identificaron secuencias fur-box en los promotores de las ureasas descriptas en Heimer *et al.*, 2002 donde se comprobó que Fur interactúa directamente en las regiones promotoras de *ureD* y *ureA* regulándolas positivamente promoviendo su expresión.

A través del análisis proteómico se identificaron 7 de los genes que participan en la supervivencia del estrés ácido. A pesar de que se predijeron regiones fur-box en los promotores de *gadA* y *gadB*, no se observó una expresión diferencial de GadA y GadB al escindir el gen *fur* o inactivar la proteína Fur mediane la limitación de hierro en el medio. Por otro lado, se observó una sobreexpresión de la proteína HdeA ante la ausencia de *fur*, mientras que al limitar la biodisponibilidad de hierro de la cepa Rafaela no se observó una diferencia de expresión significativa (**Tabla 9**). Esto puede deberse a una regulación indirecta de *fur*.

Gen	Predicción de secuencia fur-box	Análisis proteómico
cysB	No	No hubo expresión diferencial
hdeA	No	Mas abundante en Δfur
hdeB	No	No hubo expresión diferencial
hdeD	No	No hubo expresión diferencial
cfa	No	No hubo expresión diferencial
gadA	Sí	No hubo expresión diferencial
gadB	Sí	No hubo expresión diferencial
gadX	Sí	No identificado

Tabla 9. Genes de E. coli O157:H7 involucrados en la supervivencia al estrés ácido.

Teniendo en cuenta que al realizar un *knock-out* del gen *fur* el porcentaje de supervivencia al estrés ácido aumentó significativamente, y quede las proteínas identificadas en el análisis proteómico HdeA presentó una expresión diferencial en donde su expresión aumentó ante la ausencia de *fur*, podemos considerar que *fur* está regulando negativamente de forma indirecta genes relacionados con las vías de resistencia al estrés ácido.

4.11. Evaluación del rol de *fur* en la motilidad de *E. coli* O157:H7

Dado a que la motilidad bacteriana cumple gran diversidad de roles en el proceso de patogénesis como: la búsqueda de un entorno optimo en el huésped, la colonización e invasión y la permanencia en el sitio de infección, en este trabajo, se estudió la participación de *fur* en la

motilidad de *E. coli* O157:H7 en un medio de cultivo de agar blando al 0,3% en donde la motilidad de la bacteria disminuyó significativamente ante la ausencia del gen *fur* (**Figura 32**).

Figura 32: La ausencia del gen *fur* reduce la motilidad de *E. coli* O157:H7. Diámetro de la motilidad de las cepas Rafaela II (salvaje), Δfur y $\Delta fur/pFurC$ en medio de cultivo agar blando 0,3%. La significancia estadística se determinó mediante One-way ANOVA, seguido del Tukey's Multiple Comparison Test. **, *p*< 0,01; *, *p*<0,05.

Mas de 60 genes constituyentes de al menos 14 operones se encuentran involucrados en la regulación, síntesis y ensamblado flagelar de *E. coli* (Sun *et al*, 2022; Sudo *et al*, 2014; Clarke *et al*, 2006). Entre los mismos, 40 de ellos fueron identificados a través del análisis proteómico (sección 4.6.), y mediante PRODORIC (sección 4.1.1.) se predijo que *qseC*, *adhE*, *cadA*, *sdiA* y *flhD* cuentan con la secuencia fur-box en su región promotora, pero ninguno de estos presentó una expresión diferencial. En cuanto a las 35 proteínas identificadas que no cuentan con la secuencia fur-box en su región presentaron una expresión diferencial y 21 de ellos presentaron una regulación negativa tanto en una o ambas condiciones (salvaje crecida en medio LB + 300 μ M de BPD y Δfur al compararlas con la cepa salvaje crecida en medio LB) (**Tabla 10**).

Tabla 10. Genes de E. coli O157:H7 involucrados en la regulación, síntesis y ensamblado flagelar.

Gen	Predicción de secuencia fur-box	Análisis proteómico
qseC	Sí	No hubo expresión diferencial

adhE	Sí	No hubo expresión diferencial
CadA	Sí	No hubo expresión diferencial
sdiA	Sí	No hubo expresión diferencial
grlA	Sí	No identificada
grlR	Sí	No identificada
TolQ	Sí	No identificada
TolC	No	Menos abundante en la cepa salvaje + BPD
FlhD	Sí	No hubo expresión diferencial
fliF	No	Menos abundante en ambas condiciones
fliG	No	Menos abundante en ambas condiciones
fliL	No	Menos abundante en ambas condiciones
fliM	No	Menos abundante en la cepa Δfur
fliN	No	Menos abundante en ambas condiciones
fliO	No	Menos abundante en ambas condiciones
fliE	Sí	No identificada
flgF	No	Menos abundante en la cepa Δfur
flgH	No	Menos abundante en ambas condiciones
flgJ	No	Menos abundante en la cepa Δfur
fliA	No	Menos abundante en ambas condiciones
flgA	No	Menos abundante en la cepa Δfur
flgM	No	Menos abundante en ambas condiciones
flgN	No	Menos abundante en ambas condiciones
flgK	No	Menos abundante en ambas condiciones
flgL	No	Menos abundante en ambas condiciones
fliD	No	Menos abundante en ambas condiciones
fliS	No	Menos abundante en ambas condiciones
fliC	No	Menos abundante en ambas condiciones
tar-tap-cheRBYZ	No	Menos abundante en ambas condiciones
cheA	No	Menos abundante en ambas condiciones

Dado a que en el análisis funcional se observó una disminución significativa de la motilidad bacteriana al escindir el gen *fur* y que, entre los 40 genes identificados, involucrados en la regulación, síntesis y ensamblado flagelar, 21 de ellos presentaron una disminución de su expresión se puede confirmar que *fur* tiene una participación indirecta en la regulación positivade la motilidad de *E. coli* O157:H7. Igualmente, dado a que algunos de estos presentaron una expresión diferencial negativa únicamente en Δfur (Fur no se encuentra presente) y no en la cepa salvaje crecida en medio LB + 300 µM de BPD (Fur se encuentra en su conformación inactiva), *fur* podría estar comportándose como un regulador directo para algunos de ellos.

4.12. Análisis de expresión génica qRT-PCR

En la sección 4.3., pudimos observar que el hierro cumple un rol en la expresión de genes relacionados a la virulencia y patogenicidad de la bacteria en donde en *stcE* al limitar el hierro en el medio su expresión aumentó, mientras que en *fliC* disminuyó. Dado a que estos genes cuentan con una secuencia fur-box en su región promotora según la predicción obtenida mediante el análisis informático realizado en la sección 4.1., se propuso realizar un análisis de expressión génica de stcE y fliC mediante RT-qPCR entre las cepas Rafaela II, Δfur y $\Delta fur/pFurC$. Al observar que la ausencia del gen *fur* aumentó significativamente la expresión de stcE (Figura 33) y que ante bajas concentraciones de hierro su expresión también se vio aumentada (sección 4.3.), podemos afirmar que Fur se comporta como un represor directo del gen stcE. La no detección de la proteína StcE en nuestro análisis proteómico sugiere que la regulación de este factor de virulencia podría estar ocurriendo apenas a niveles transcripcionales. A diferencia de stcE, fliC mostró una disminución de su expresión en la cepa mutante Δfur y al limitar el hierro en el medio de la cepa Rafaela II (sección 4.3.) por lo que podemos afirmar que Fur promueve directamente el gen *fliC*. A su vez, *fliC* fue identificado en el análisis proteómico en donde fue menos abundante en ambas condiciones (Rafaela crecida en medio LB + 300 μ M de BPD y Δfur al compararlas con la cepa Rafaela II crecida en medio LB), confirmando así que fur es un regulador directo positivo de *fliC* en *E. coli* O157:H7.

Figura 33: Análisis del rol de *fur* en la expresión génica de *stcE y fliC*mediante RT-qPCR. RTq-PCR del gen *stcEy fliC*de *E. coli* O157:H7 Rafaela II (salvaje), $\Delta fur y \Delta fur/pFurC$ en medio LB. La significancia estadística se determinó mediante One-way ANOVA, seguido del Tukey'sMultipleComparison Test. **, *p*<0,01; ***, *p*<0,001.

5. Conclusiones

En el presente trabajo se logró demostrar cómo el factor transcripcional *fur* impacta en la patofisiología de E. coli O157:H7. Partiendo de un análisis in sillico, se identificaron 427 genes con predicción positiva para la secuencia fur-box en su región promotora, de estos un 52,2% no se encuentran presentes en la cepa comensal E. coli K-12 entre los cuales se identificaron 32 factores de virulencia. A su vez, se reconoció que un 11,9% se encuentran localizados en fagos y un 25,5% se encuentran localizados en islas genómicas, mayoritariamente en islas de patogenicidad. Por lo tanto, se predijo que fur cumple un rol en la regulación de genes codificantes de factores de virulencia y presentes en islas de patogenicidad ausentes en E. coli comensal. A partir de esta predicción, se evaluaron los efectos de la ausencia del gen fur en la virulencia y patogenicidad de E. coli O157:H7 a través de diversos ensayos funcionales donde se determinó que fur cumple un papel como regulador positivo de vías de genes involucradas en la adhesión a las células epiteliales, la supervivencia al ataque de los macrófagos y la motilidad bacteriana, mientras que ante la resistencia al estrés acido mostró su participación como un regulador negativo de las mismas. También se vio que tanto ante la ausencia del gen fur como en condiciones limitantes de hierro donde Fur se encuentra en su conformación inactiva, hubo una expresión diferencial de 371 proteínas. Estos análisis proteómicos nos permitieron identificar por la primera vez el conjunto de proteínas que podrían ser parte del regulón fur en E. coli O157:H7.

ANÁLISIS DEL PAPEL DE LA BIODISPONIBILIDAD DE HIERRO Y DEL REGULADOR

TRANSCRIPCIONAL fur EN LA PATOFISIOLOGÍA DE ESCHERICHIA COLI O157:H7 Iannelli, Daniela Noemí

6. ANEXO I

Tabla 11: Predicción de genes de E. coli O157:H7 Rafaela II con secuencias fur-box en su región promotora mediante PRODORIC.

Score	Gen	Gen ID	Distancia al ATG	Producto
7.45 (4.04)	acrS	XF37_RS02910	-138	multidrug efflux transporter transcriptional repressor AcrS
7.42 (4.19)	araE	XF37_RS05125	-153	arabinose-protonsymporterAraE
7.55 (3.36)	astC	XF37_RS12490	-55	succinylornithine/acetylornithinetransaminase
7.60 (3.34)	bioD	XF37_RS13295	-58	dethiobiotinsynthase
7.74 (3.44)	btsT	XF37_RS24530	-287	pyruvate/protonsymporterBtsT
7.36 (4.04)	caiT	XF37_RS24075	-37	L-carnitine/gamma-butyrobetaine antiporter
7.68 (4.04)	chuA	XF37_RS01645	-83	TonB-dependent heme/hemoglobin receptor ChuA/ShuA
7.28 (3.14)	cirA	XF37_RS08810	-44	catecholatesiderophore receptor CirA
7.25 (4.04)	citC	XF37_RS20995	-180	[citrate (pro-3S)-lyase] ligase
7.60 (3.33)	comR	XF37_RS17085	-133	TetR family copper-responsive transcriptional repressor ComR
7.23 (4.04)	суоА	XF37_RS21850	-247	cytochrome o ubiquinol oxidase subunit II
7.21 (3.36)	cysJ	XF37_RS05520	-126	NADPH-dependent assimilatory sulfite reductase flavoprotein subunit
7.41 (4.04)	dps	XF37_RS19725	-141	DNA starvation/stationary phase protection protein Dps
7.31 (3.47)	ecpR	XF37_RS22640	-165	ECP biosynthesisoperon DNA-bindingtranscriptionalregulatorEcpR
7.25 (4.04)	epd	XF37_RS04595	-176	erythrose-4-phosphate dehydrogenase
7.26 (4.04)	lipA	XF37_RS20950	-300	lipoylsynthase

Página 91de 162

ANÁLISIS DEL PAPEL DE LA BIODISPONIBILIDAD DE HIERRO Y DEL REGULADOR

TRANSCRIPCIONAL fur EN LA PATOFISIOLOGÍA DE ESCHERICHIA COLI O157:H7 Iannelli, Daniela Noemí

7.30 (4.19)	escQ	XF37_RS00600	-126	type III secretion system LEE ring protein EscQ
7.37 (3.19)	tssF	XF37_RS23100	-299	type VI secretion system baseplate subunit TssF
7.20 (3.58)	yccA	XF37_RS18900	-299	FtsHproteasemodulatorYccA
7.34 (4.19)	aer	XF37_RS03835	-297	aerotaxis sensor receptor Aer
7.76 (4.04)	fliE	XF37_RS11280	-296	flagellar hook-basal body complex protein FliE
7.44 (3.33)	tssB	XF37_RS23080	-296	type VI secretion system contractile sheath small subunit
7.60 (3.34)	espR4	XF37_RS11285	-295	T3SS effector leucine-rich repeat protein EspR4
7.23 (3.58)	escR	XF37_RS00510	-96	type III secretion system LEE export apparatus protein EscR
8.00 (3.34)	espA	XF37_RS00645	-200	type III secretion system LEE translocon filament proteinEspA
7.25 (3.19)		XF37_RS22760	-291	septationinitiationprotein
7.18 (4.04)	glnG	XF37_RS27075	-289	nitrogen regulation protein NR(I)
7.24 (3.44)	espM2	XF37_RS06215	-187	T3SS effector guanine nucleotide exchange factor EspM2
7.36 (3.38)	espX6	XF37_RS24620	-261	T3SS effector pentapeptide repeatprotein EspX6
7.56 (3.58)	yjdM	XF37_RS25685	-286	zinc ribbon domain-containing protein YjdM
7.24 (4.19)	vsr	XF37_RS11170	-285	VSPR family DNA mismatch endonuclease
7.24 (4.19)	rfaH	XF37_RS27210	-284	transcription/translation regulatory transformer protein RfaH
7.65 (4.19)		XF37_RS22885	-283	transcriptionantiterminationprotein
7.59 (3.44)	pepA	XF37_RS24910	-282	leucylaminopeptidase
7.47 (4.04)	ribB	XF37_RS03970	-280	3,4-dihydroxy-2-butanone-4-phosphate synthase
7.44 (3.28)	yhjX	XF37_RS01380	-280	MFS transporter

Página 92de 162

ANÁLISIS DEL PAPEL DE LA BIODISPONIBILIDAD DE HIERRO Y DEL REGULADOR

TRANSCRIPCIONAL fur EN LA PATOFISIOLOGÍA DE ESCHERICHIA COLI O157:H7 Iannelli, Daniela Noemí

7.18 (4.04)	celF	XF37_RS12560	-280	6-phospho-beta-glucosidase
8.30 (3.28)	fepD	XF37_RS21135	-38	Fe(3+)-siderophore ABC transporter permease
7.38 (3.23)		XF37_RS25960	-278	hypotheticalprotein
7.88 (4.04)	ompF	XF37_RS19105	-277	porinOmpF
7.73 (3.51)	<i>ујсВ</i>	XF37_RS25930	-276	YjcBfamilyprotein
7.20 (3.28)	yciK	XF37_RS14930	-274	YciKfamilyoxidoreductase
7.29 (4.04)		XF37_RS00125	-273	hypotheticalprotein
7.21 (3.34)		XF37_RS21535	-273	YadAfamilyautotransporteradhesin
8.22 (4.04)	<i>kdpF</i>	XF37_RS20625	-271	K(+)-transporting ATPase subunit F
7.30 (3.34)	fhuE	XF37_RS17135	-91	ferric-rhodotorulic acid/ferric-coprogen receptor FhuE
7.25 (2.80)	fhuF	XF37_RS24460	-129	siderophore-ironreductaseFhuF
7.54 (3.51)	gcvT	XF37_RS04715	-270	glycine cleavage system aminomethyltransferaseGcvT
7.32 (3.28)		XF37_RS18670	-270	hypotheticalprotein
7.29 (3.34)	mdh	XF37_RS03040	-270	malate dehydrogenase
7.53 (3.19)	yddE	XF37_RS14125	-269	PhzFfamilyisomerase
7.32 (3.28)		XF37_RS17550	-269	hypotheticalprotein
7.22 (4.19)	aroP	XF37_RS23705	-269	aromatic amino acid transporter AroP
7.88 (3.33)	plaP	XF37_RS10150	-265	putrescine/protonsymporterPlaP
7.26 (3.14)	torS	XF37_RS18235	-265	TMAO reductase system sensor histidine kinase/response regulator TorS
7.70 (4.04)	fimA	XF37_RS13895	-91	type 1 fimbrial major subunit FimA

Página 93de 162

ANÁLISIS DEL PAPEL DE LA BIODISPONIBILIDAD DE HIERRO Y DEL REGULADOR

TRANSCRIPCIONAL fur EN LA PATOFISIOLOGÍA DE ESCHERICHIA COLI O157:H7 Iannelli, Daniela Noemí

7.65 (4.19)	ypfM	XF37_RS07020	-264	proteinYpfM
7.29 (4.19)	fiu	XF37_RS19760	-190	catecholatesiderophore receptor Fiu
7.55 (4.19)	yphG	XF37_RS06595	-262	DUF5107 domain-containingprotein
7.24 (3.34)	ldhA	XF37_RS14465	-262	D-lactatedehydrogenase
7.21 (4.19)		XF37_RS17825	-262	phosphoethanolaminetransferase
8.77 (4.19)		XF37_RS09240	-260	DUF1441 familyprotein
7.41 (3.14)		XF37_RS10415	-260	DUF826 domain-containingprotein
7.41 (3.14)		XF37_RS09205	-260	DUF826 domain-containingprotein
7.19 (4.19)	focA	XF37_RS19230	-190	formatetransporterFocA
7.17 (3.19)	hisJ	XF37_RS08070	-257	histidine ABC transporter substrate-binding protein HisJ
7.98 (4.19)	qseE	XF37_RS06560	-256	two component system sensor histidine kinase QseE/GlrK
7.30 (3.37)	gltL	XF37_RS20830	-256	glutamate/aspartate ABC transporter ATP-binding protein GltL
7.66 (4.19)		XF37_RS24550	-255	DEAD/DEAH box helicase family protein
7.59 (3.51)	yidB	XF37_RS00250	-255	YidBfamilyprotein
7.51 (3.58)	yegW	XF37_RS09490	-253	GntRfamilytranscriptionalregulator
7.36 (3.23)	ygbA	XF37_RS05680	-253	nitrous oxide-stimulated promoter family protein
8.50 (3.37)		XF37_RS11005	-252	terminase smallsubunit
7.24 (4.04)	grxD	XF37_RS12970	-250	monothiolglutaredoxin 4
8.05 (4.19)		XF37_RS26250	-249	PTS system mannose/fructose/N-acetylgalactosamine-transporter subunit IIB
8.58 (4.19)	fur	XF37_RS20700	-84	ferric iron uptake transcriptional regulator

Página 94de 162

ANÁLISIS DEL PAPEL DE LA BIODISPONIBILIDAD DE HIERRO Y DEL REGULADOR

TRANSCRIPCIONAL fur EN LA PATOFISIOLOGÍA DE ESCHERICHIA COLI O157:H7 Iannelli, Daniela Noemí

7.62 (4.19)	gadB	XF37_RS13970	-145	glutamatedecarboxylase
7.50 (3.51)		XF37_RS22600	-246	NADH-dependentflavinoxidoreductase
7.24 (2.91)		XF37_RS17840	-246	hypotheticalprotein
7.17 (4.04)	aqpZ	XF37_RS19375	-246	aquaporin Z
7.37 (3.23)	narX	XF37_RS15915	-243	nitrate/nitrite two-component system sensor histidine kinase NarX
8.39 (4.04)	gpmA	XF37_RS20305	-42	2,3-diphosphoglycerate-dependent phosphoglycerate mutase
7.37 (4.19)		XF37_RS17625	-242	hypotheticalprotein
7.23 (4.19)		XF37_RS17820	-241	hypotheticalprotein
7.32 (4.19)		XF37_RS00460	-240	hypotheticalprotein
8.27 (4.04)	iha	XF37_RS17640	-71	bifunctionalsiderophore receptor/adhesinIha
7.62 (3.23)		XF37_RS20095	-238	hypotheticalprotein
7.18 (4.19)		XF37_RS13615	-238	phagetailassembly chaperone
8.47 (4.04)		XF37_RS00190	-236	ShET2/EspL2 family type III secretion system effector toxin
7.37 (4.04)		XF37_RS13505	-235	DUF3927 familyprotein
7.37 (4.04)		XF37_RS10940	-235	DUF3927 familyprotein
7.73 (3.47)	kdgR	XF37_RS12075	-59	DNA-binding transcriptional regulator KdgR
7.30 (3.51)		XF37_RS04935	-233	helix-turn-helix domain-containing protein
7.27 (3.23)	pdeF	XF37_RS06850	-231	cyclic-guanylate-specific phosphodiesterase PdeF
7.50 (4.04)	ler	XF37_RS00485	-90	type III secretion system LEE master regulator Ler
7.70 (4.19)		XF37_RS10510	-229	phagetailassembly chaperone
-				

Página 95de 162

ANÁLISIS DEL PAPEL DE LA BIODISPONIBILIDAD DE HIERRO Y DEL REGULADOR

TRANSCRIPCIONAL fur EN LA PATOFISIOLOGÍA DE ESCHERICHIA COLI O157:H7 Iannelli, Daniela Noemí

7.31 (4.19)		XF37_RS00080	-229	fimbrialprotein
7.40 (4.19)	lpfA1	XF37_RS01385	-278	long polar fimbria major subunit LpfA1
7.39 (4.04)	nleA	XF37_RS15420	-227	type III secretion system effector NleA
7.22 (3.44)	escU	XF37_RS00525	-226	type III secretion system LEE export apparatus switch protein EscU
7.68 (4.19)	<i>iscR</i>	XF37_RS06685	-224	Fe-S cluster assembly transcriptional regulator IscR
7.48 (4.04)	mltD	XF37_RS23205	-160	mureintransglycosylase D
7.20 (3.47)	mqo	XF37_RS08540	-109	malate dehydrogenase (quinone)
7.47 (4.19)	rhtA	XF37_RS19720	-221	threonine/homoserineexporterRhtA
7.28 (3.33)	nanC	XF37_RS24750	-221	N-acetylneuraminic acid outer membrane channel NanC
7.29 (3.47)	torR	XF37_RS18225	-220	two-component system response regulator TorR
7.21 (4.19)		XF37_RS11830	-217	HNH endonuclease
7.41 (4.04)	nagD	XF37_RS20740	-57	ribonucleotidemonophosphataseNagD
7.77 (3.51)	queE	XF37_RS05460	-215	7-carboxy-7-deazaguanine synthaseQueE
7.51 (4.04)	smg	XF37_RS02810	-215	DUF494 familyproteinSmg
7.34 (3.19)	tdcC	XF37_RS03620	-215	threonine/serinetransporterTdcC
7.72 (3.34)	chaA	XF37_RS15945	-214	sodium-potassium/protonantiporterChaA
7.22 (2.68)	livJ	XF37_RS02020	-214	branched chain amino acid ABC transporter substrate-binding protein LivJ
7.69 (3.33)	frc	XF37_RS07450	-213	formyl-CoAtransferase
7.20 (3.33)	alaC	XF37_RS07420	-213	alaninetransaminase
7.60 (4.19)	narU	XF37_RS14100	-83	nitrate/nitritetransporterNarU

Página 96de 162

ANÁLISIS DEL PAPEL DE LA BIODISPONIBILIDAD DE HIERRO Y DEL REGULADOR

TRANSCRIPCIONAL fur EN LA PATOFISIOLOGÍA DE ESCHERICHIA COLI O157:H7 Iannelli, Daniela Noemí

8.50 (4.19)	nfeF	XF37_RS03845	-228	NADPH-dependent ferric chelate reductase
7.35 (3.44)	grlR	XF37_RS00535	-211	type III secretion system LEE GrlA-binding negative regulator GrlR
7.42 (3.34)	yif B	XF37_RS27610	-207	YifB family Mg chelatase-like AAA ATPase
7.83 (3.51)		XF37_RS01720	-206	hypotheticalprotein
7.30 (4.04)	cmtB	XF37_RS04540	-205	PTS mannitol transporter subunit IIA
8.30 (4.04)	bdm	XF37_RS14035	-156	biofilm-dependentmodulationprotein
7.23 (4.04)	nleG	XF37_RS15365	-183	T3SS effector E3 ubiquitin-protein ligase NleG
7.38 (3.37)	cyaY	XF37_RS27395	-203	irondonorproteinCyaY
7.74 (4.04)	norR	XF37_RS05795	-221	nitric oxide reductasetranscriptionalregulatorNorR
7.38 (4.04)		XF37_RS04970	-200	effectorprotein
7.48 (3.34)	pdxY	XF37_RS13060	-98	pyridoxalkinasePdxY
7.32 (4.19)		XF37_RS23160	-199	hypotheticalprotein
7.35 (4.19)	perB	XF37_RS10070	-149	GDP-perosamine N-acetyltransferase
7.27 (3.44)	ygiV	XF37_RS04085	-198	GyrI-like domain-containing protein
7.29 (3.37)	priC	XF37_RS21675	-94	primosomalreplicationprotein N"
7.25 (3.51)	yaaA	XF37_RS24245	-196	peroxide stress proteinYaaA
7.42 (4.19)	pyrB	XF37_RS24975	-277	aspartatecarbamoyltransferase
7.27 (4.04)	yhjB	XF37_RS01545	-194	response regulatortranscription factor
7.20 (4.19)	stpA	XF37_RS06000	-194	DNA-bindingproteinStpA
7.79 (4.04)	sulA	XF37_RS18960	-192	celldivisioninhibitorSulA

Página 97de 162

ANÁLISIS DEL PAPEL DE LA BIODISPONIBILIDAD DE HIERRO Y DEL REGULADOR

TRANSCRIPCIONAL fur EN LA PATOFISIOLOGÍA DE ESCHERICHIA COLI O157:H7 Iannelli, Daniela Noemí

7.20 (3.51)	rclC	XF37_RS22560	-57	reactive chlorine species resistance protein RclC
7.59 (4.04)	<i>rtcB</i>	XF37_RS02230	-82	RNA-splicing ligase RtcB
7.31 (3.36)	sctN	XF37_RS04955	-122	type III secretion system ATPase SctN
7.49 (3.51)	uspB	XF37_RS01730	-186	universal stress proteinUspB
8.35 (4.19)	sdiA	XF37_RS11380	-39	transcriptionalregulatorSdiA
7.31 (3.51)	fepA	XF37_RS21170	-185	siderophoreenterobactin receptor FepA
7.21 (3.44)	escT	XF37_RS00520	-184	type III secretion system LEE export apparatus protein EscT
7.20 (4.04)	tdcE	XF37_RS03630	-184	2-ketobutyrate formate-lyase/pyruvate formate-lyase
8.18 (3.28)		XF37_RS18805	-183	alpha/beta hydrolase
7.33 (4.19)		XF37_RS17025	-183	phage integrase Arm DNA-binding domain-containing protein
7.31 (3.51)	sepL	XF37_RS00640	-34	type III secretion system LEE gatekeeper SepL
7.32 (4.19)	pth	XF37_RS16015	-180	aminoacyl-tRNAhydrolase
7.20 (4.04)	shoB	XF37_RS06525	-193	type I toxin-antitoxin system toxin ShoB
7.73 (4.19)		XF37_RS13245	-179	proteinYdgV
7.31 (3.33)	yicJ	XF37_RS00745	-179	glycoside-pentoside-hexuronidefamilytransporter
7.29 (4.19)	ydiY	XF37_RS12620	-178	YdiYfamilyprotein
7.95 (3.44)	yhiY	XF37_RS01760	-176	proteinYhiY
7.68 (4.04)	yiaA	XF37_RS01300	-176	innermembraneproteinYiaA
8.94 (4.19)	ssuE	XF37_RS19065	-299	NADPH-dependent FMN reductase
7.17 (3.33)		XF37_RS24635	-176	hypotheticalprotein

Página 98de 162

ANÁLISIS DEL PAPEL DE LA BIODISPONIBILIDAD DE HIERRO Y DEL REGULADOR

TRANSCRIPCIONAL fur EN LA PATOFISIOLOGÍA DE ESCHERICHIA COLI O157:H7 Iannelli, Daniela Noemí

7.67 (4.04)	суиР	XF37_RS03645	-175	amino acid permease
8.47 (3.37)	sufA	XF37_RS12815	-199	Fe-S cluster assembly scaffold SufA
7.30 (4.19)	dacA	XF37_RS20930	-175	D-alanyl-D-alaninecarboxypeptidaseDacA
7.26 (4.19)		XF37_RS07515	-175	oligosaccharide MFS transporter
7.65 (3.51)	hemB	XF37_RS22170	-172	porphobilinogensynthase
7.50 (3.47)	anmK	XF37_RS13040	-172	anhydro-N-acetylmuramicacidkinase
7.27 (2.87)	eutS	XF37_RS07065	-171	ethanolamine utilization microcompartment protein EutS
7.63 (4.19)	prpR	XF37_RS22365	-170	propionatecatabolismoperonregulatoryproteinPrpR
7.51 (4.19)	dapD	XF37_RS23435	-170	2,3,4,5-tetrahydropyridine-2,6-dicarboxylate N-succinyltransferase
7.21 (4.04)	ais	XF37_RS08340	-170	lipopolysaccharide core heptose(II)-phosphate phosphatase Ais
8.28 (4.19)	symE	XF37_RS24565	-37	endoribonucleaseSymE
9.53 (4.19)	ylcI	XF37_RS16405	-169	YlcI/YnfOfamilyprotein
9.53 (4.19)		XF37_RS15545	-169	YlcI/YnfOfamilyprotein
7.63 (3.44)	tir	XF37_RS00620	-199	type III secretion system LEE translocated intimin receptor Tir
7.23 (3.51)	slyA	XF37_RS13030	-167	transcriptionalregulatorSlyA
7.98 (3.34)		XF37_RS09695	-166	phage baseplate assembly protein V
7.33 (4.04)	udk	XF37_RS09865	-78	uridinekinase
7.60 (4.19)	grcA	XF37_RS06435	-166	autonomousglycyl radical cofactor GrcA
7.48 (4.19)	rppH	XF37_RS05180	-166	RNA pyrophosphohydrolase
7.47 (4.19)	ugd	XF37_RS10080	-122	UDP-glucose 6-dehydrogenase

ANÁLISIS DEL PAPEL DE LA BIODISPONIBILIDAD DE HIERRO Y DEL REGULADOR

TRANSCRIPCIONAL fur EN LA PATOFISIOLOGÍA DE ESCHERICHIA COLI O157:H7 Iannelli, Daniela Noemí

7.28 (4.04)	uhpA	XF37_RS00395	-170	transcriptionalregulatorUhpA
7.55 (3.34)	zur	XF37_RS26100	-164	zinc uptake transcriptional repressor Zur
7.88 (4.19)	yhbX	XF37_RS03325	-163	phosphoethanolaminetransferase
7.86 (4.19)	wcaK	XF37_RS09985	-211	colanic acid biosynthesis pyruvyl transferase WcaK
7.20 (3.58)	melR	XF37_RS25630	-162	transcriptionalregulatorMelR
7.81 (3.47)	wzx	XF37_RS10025	-99	O157 family O-antigenflippase
7.55 (3.44)	lptD	XF37_RS23995	-161	LPS assemblyproteinLptD
8.09 (4.19)	fepB	XF37_RS21125	-45	Fe2+-enterobactin ABC transporter substrate-binding protein
7.82 (4.04)	moeA	XF37_RS19645	-159	molybdopterinmolybdotransferaseMoeA
7.50 (3.38)		XF37_RS09765	-159	phagetailprotein
7.17 (3.36)		XF37_RS01750	-159	DUF4049 domain-containingprotein
8.30 (4.19)	yncD	XF37_RS14195	-158	TonB-dependent receptor
7.76 (4.04)		XF37_RS06750	-158	molybdopterin-dependentoxidoreductase
7.19 (3.58)	ybfE	XF37_RS20685	-158	LexAregulatedprotein
7.51 (3.47)	treR	XF37_RS25000	-157	trehaloseoperonrepressorTreR
7.69 (4.04)		XF37_RS00130	-112	hypotheticalprotein
7.26 (4.19)		XF37_RS16850	-156	hypotheticalprotein
7.20 (4.19)	dppB	XF37_RS01425	-156	dipeptide ABC transporter permease DppB
7.41 (4.19)	bax	XF37_RS01260	-155	proteinbax
7.74 (4.04)		XF37_RS04520	-154	lipoprotein

Página 100de 162

ANÁLISIS DEL PAPEL DE LA BIODISPONIBILIDAD DE HIERRO Y DEL REGULADOR

TRANSCRIPCIONAL fur EN LA PATOFISIOLOGÍA DE ESCHERICHIA COLI O157:H7 Iannelli, Daniela Noemí

7.56 (4.04)		XF37_RS24170	-154	fimbrialprotein
8.21 (4.04)		XF37_RS20520	-153	hypotheticalprotein
7.50 (4.19)	mglB	XF37_RS08835	-153	galactose/glucose ABC transporter substrate-binding protein MglB
7.33 (3.58)	yfiF	XF37_RS06425	-153	tRNA/rRNAmethyltransferase
7.33 (4.19)	yncJ	XF37_RS14275	-153	YncJfamilyprotein
7.28 (3.58)	mdtI	XF37_RS13255	-153	multidrug/spermidine efflux SMR transporter subunit MdtI
8.45 (3.51)	yieP	XF37_RS27655	-150	FadRfamilytranscriptionalregulator
7.42 (4.19)	purH	XF37_RS26340	-150	bifunctionalphosphoribosylaminoimidazolecarboxamideformyltransferase/IMP cy- clohydrolase
8.55 (4.19)	metJ	XF37_RS26685	-148	met regulón transcriptional regulator MetJ
7.33 (4.19)		XF37_RS24180	-148	fimbrial biogenesis outer membrane usher protein
7.22 (4.04)		XF37_RS17000	-147	hypotheticalprotein
7.17 (4.19)	glpT	XF37_RS08410	-147	glycerol-3-phosphate transporter
7.96 (4.04)		XF37_RS00390	-229	hypotheticalprotein
7.34 (3.34)	ecpC	XF37_RS22655	-146	fimbrialusherEcpC
7.30 (3.47)		XF37_RS01005	-83	UDP-glucose(galactosyl) LPS alpha1,2-glucosyltransferase
7.57 (3.58)	gadA	XF37_RS01560	-145	glutamatedecarboxylase
7.17 (3.37)	fadD	XF37_RS12190	-145	long-chain-fatty-acidCoA ligase FadD
7.19 (4.04)		XF37_RS08430	-144	MFS transporter
7.22 (4.19)	robA	XF37_RS24310	-143	MDR effluxpumpAcrABtranscriptionalactivatorRobA

ANÁLISIS DEL PAPEL DE LA BIODISPONIBILIDAD DE HIERRO Y DEL REGULADOR

TRANSCRIPCIONAL fur EN LA PATOFISIOLOGÍA DE ESCHERICHIA COLI O157:H7 Iannelli, Daniela Noemí

7.66 (4.04)		XF37_RS15715	-142	DUF1482 familyprotein
7.17 (3.23)	escS	XF37_RS00515	-142	type III secretion system LEE export apparatus protein EscS
8.07 (4.19)	trpE	XF37_RS14965	-141	anthranilatesynthasecomponent I
7.70 (4.04)	ypeA	XF37_RS07160	-141	GNAT familyacetyltransferase
7.59 (3.34)		XF37_RS01010	-282	lipopolysaccharide N-acetylglucosaminyltransferase
7.18 (4.19)	ggt	XF37_RS02100	-141	gamma-glutamyltransferase
7.55 (4.19)	gap	XF37_RS14365	-140	type I glyceraldehyde-3-phosphate dehydrogenase
7.55 (3.34)	dgcM	XF37_RS14520	-140	diguanylatecyclaseDgcM
7.29 (4.04)	ybhC	XF37_RS20220	-140	putative acyl-CoA thioester hydrolase
7.43 (4.04)	grpE	XF37_RS06265	-139	nucleotideexchange factor GrpE
7.72 (3.44)		XF37_RS10020	-138	glycosyltransferase
7.77 (3.34)		XF37_RS01755	-97	DUF4049 domain-containingprotein
8.89 (4.19)	folE	XF37_RS08820	-136	GTP cyclohydrolase I FolE
7.34 (3.34)	hns	XF37_RS15835	-136	DNA-binding transcriptional regulator H-NS
7.65 (4.19)		XF37_RS15730	-135	phage integrase Arm DNA-binding domain-containing protein
7.65 (4.19)		XF37_RS15330	-135	phage integrase Arm DNA-binding domain-containing protein
8.09 (2.91)	mntH	XF37_RS07360	-69	Nramp family divalent metal transporter
7.39 (3.34)	dinJ	XF37_RS22985	-133	type II toxin-antitoxin system antitoxin DinJ
8.07 (4.04)		XF37_RS04035	-48	ABC transporter ATP-binding protein
7.48 (4.04)	cesT	XF37_RS00625	-131	type III secretion system LEE chaperone CesT

Página 102de 162

ANÁLISIS DEL PAPEL DE LA BIODISPONIBILIDAD DE HIERRO Y DEL REGULADOR

TRANSCRIPCIONAL fur EN LA PATOFISIOLOGÍA DE ESCHERICHIA COLI O157:H7 Iannelli, Daniela Noemí

7.41 (3.33)	cydD	XF37_RS19310	-131	cysteine/glutathione ABC transporter permease/ATP-binding protein CydD
7.22 (4.04)		XF37_RS04975	-218	YscQ/HrcQ family type III secretion apparatus protein
7.19 (3.23)		XF37_RS14595	-131	SDR familyoxidoreductase
7.86 (3.34)		XF37_RS26240	-130	SDR familyoxidoreductase
7.36 (3.36)	coaA	XF37_RS26500	-130	type I pantothenatekinase
7.21 (4.19)	ompC	XF37_RS08515	-205	porinOmpC
7.53 (4.19)		XF37_RS04995	-106	EscU/YscU/HrcU family type III secretion system export apparatus switch protein
7.72 (3.47)	ypfG	XF37_RS07045	-127	DUF1176 domain-containingprotein
7.55 (3.23)	yfeX	XF37_RS07175	-127	porphyrinogenperoxidase
7.40 (4.19)	ylaC	XF37_RS21720	-127	YlaCfamilyprotein
7.45 (4.19)	ytfF	XF37_RS25145	-126	DMT familytransporter
7.38 (4.19)	agaR	XF37_RS03550	-126	agaoperontranscriptionalregulatorAgaR
7.23 (4.19)		XF37_RS05015	-92	type III secretion system needle complex protein
7.33 (3.34)	ybjT	XF37_RS19405	-126	SDR familyoxidoreductase
7.23 (4.04)		XF37_RS10055	-126	mannose-1-phosphate guanylyltransferase/mannose-6-phosphate isomerase
7.32 (3.34)		XF37_RS05030	-260	type III secretionapparatusproteinOrgA/MxiK
7.52 (4.04)		XF37_RS05080	-110	hypotheticalprotein
7.44 (3.58)	mhpR	XF37_RS22280	-125	DNA-bindingtranscriptionalregulator
7.19 (4.04)	yebE	XF37_RS11980	-125	tellurite resistance TerB family protein
7.88 (4.19)	torY	XF37_RS11770	-123	NapC/NirT family cytochrome c

Página 103de 162

ANÁLISIS DEL PAPEL DE LA BIODISPONIBILIDAD DE HIERRO Y DEL REGULADOR

TRANSCRIPCIONAL fur EN LA PATOFISIOLOGÍA DE ESCHERICHIA COLI O157:H7 Iannelli, Daniela Noemí

7.67 (4.19)		XF37_RS05540	-52	CRISPR-associated helicase/endonuclease Cas3
8.28 (4.04)	rcnR	XF37_RS09455	-121	Ni(II)/Co(II)-binding transcriptional repressor RcnR
7.36 (4.04)	yfdX	XF37_RS07445	-121	YfdXfamilyprotein
7.40 (3.47)		XF37_RS06065	-50	DUF5507 domain-containingprotein
7.84 (3.33)	ybiI	XF37_RS19770	-119	C4-type zinc finger proteinYbiI
7.28 (3.19)	ytf B	XF37_RS25165	-119	celldivisionproteinYtfB
7.27 (3.34)	amiC	XF37_RS05245	-119	N-acetylmuramoyl-L-alanineamidaseAmiC
7.21 (4.04)	yejO	XF37_RS08630	-119	autotransporterYejO
7.48 (4.19)		XF37_RS10880	-118	hypotheticalprotein
7.56 (3.44)	rdgC	XF37_RS22060	-117	recombination-associatedproteinRdgC
7.40 (3.58)	glpQ	XF37_RS08415	-117	glycerophosphodiesterphosphodiesterase
7.26 (3.44)	espR3	XF37_RS11295	-114	T3SS effector leucine-rich repeat protein EspR3
7.21 (3.34)		XF37_RS00075	-114	fimbria/pilusperiplasmic chaperone
7.22 (4.19)		XF37_RS21250	-113	type VI secretion system tip protein VgrG
7.20 (3.34)		XF37_RS06100	-30	tyrosine-type recombinase/integrase
7.39 (3.58)	ygcW	XF37_RS05475	-112	SDR familyoxidoreductase
7.36 (3.51)	fnr	XF37_RS14555	-112	fumarate/nitratereductiontranscriptionalregulatorFnr
7.26 (3.44)	aslA	XF37_RS27425	-112	arylsulfataseAslA
7.25 (3.34)	mutM	XF37_RS00965	-112	bifunctional DNA-formamidopyrimidine glycosylase/DNA-(apurinic or apyrimidinic site) lyase

Página 104de 162

ANÁLISIS DEL PAPEL DE LA BIODISPONIBILIDAD DE HIERRO Y DEL REGULADOR

TRANSCRIPCIONAL fur EN LA PATOFISIOLOGÍA DE ESCHERICHIA COLI O157:H7 Iannelli, Daniela Noemí

7.41 (4.04)		XF37_RS06110	-244	hypotheticalprotein
7.51 (3.51)	bor	XF37_RS16420	-109	serumresistancelipoprotein Bor
8.02 (4.04)		XF37_RS07500	-125	LacI family DNA-binding transcriptional regulator
7.55 (3.28)	ynjF	XF37_RS12440	-108	CDP-alcohol phosphatidyltransferase family protein
7.42 (3.36)		XF37_RS01295	-107	innermembraneproteinYiaB
7.41 (4.19)		XF37_RS07530	-39	hypotheticalprotein
7.50 (3.44)		XF37_RS07715	-120	hypotheticalprotein
7.29 (3.58)	yajL	XF37_RS21890	-104	proteindeglycaseYajL
7.18 (3.34)	basR	XF37_RS25655	-104	two-component system response regulator BasR
8.39 (4.19)		XF37_RS11585	-103	DUF2511 domain-containingprotein
7.72 (4.04)	lysA	XF37_RS05140	-103	diaminopimelatedecarboxylase
7.50 (3.33)	tsx	XF37_RS21960	-103	nucleoside-specific channel-forming protein Tsx
7.48 (4.19)		XF37_RS26065	-103	hypotheticalprotein
7.44 (3.36)		XF37_RS04985	-102	EscS/YscS/HrcS family type III secretion system export apparatus protein
7.44 (3.58)		XF37_RS10010	-46	glycosyltransferase
7.63 (4.19)	artJ	XF37_RS19455	-101	ABC transporter substrate-binding protein ArtJ
7.31 (4.19)	yqfA	XF37_RS04740	-101	hemolysin III familyprotein
7.64 (3.33)	yfcL	XF37_RS07990	-100	YfcLfamilyprotein
7.24 (4.04)		XF37_RS10845	-300	toxinYdaTfamilyprotein
7.40 (4.04)		XF37_RS14085	-58	leucine-rich repeat domain-containing protein

ANÁLISIS DEL PAPEL DE LA BIODISPONIBILIDAD DE HIERRO Y DEL REGULADOR

TRANSCRIPCIONAL fur EN LA PATOFISIOLOGÍA DE ESCHERICHIA COLI O157:H7 Iannelli, Daniela Noemí

7.19 (3.23)	arg0	XF37_RS04615	-99	arginineexporterArgO
7.45 (4.04)	ydcI	XF37_RS14335	-98	LysR substrate-binding domain-containing protein
8.30 (3.51)	тар	XF37_RS23425	-97	type I methionylaminopeptidase
8.03 (4.19)	flhD	XF37_RS11670	-97	flagellartranscriptionalregulatorFlhD
7.19 (3.34)		XF37_RS15375	-168	hypotheticalprotein
7.52 (4.19)	menD	XF37_RS08275	-97	2-succinyl-5-enolpyruvyl-6-hydroxy-3- cyclohexene-1-carboxylic-acid synthase
7.29 (4.19)	pyrG	XF37_RS05430	-97	CTP synthase (glutaminehydrolyzing)
8.03 (3.51)		XF37_RS15560	-265	hypotheticalprotein
7.19 (3.51)		XF37_RS16270	-227	general stress protein
7.89 (3.44)		XF37_RS16745	-31	Arc family DNA-binding protein
7.52 (3.51)		XF37_RS10560	-95	host specificityprotein J
7.43 (3.34)		XF37_RS09620	-95	AAA familyATPase
7.28 (4.04)	pdxH	XF37_RS13050	-95	pyridoxamine 5'-phosphate oxidase
7.79 (3.36)	wzzB	XF37_RS10085	-94	LPS O-antigen chain length determinant protein WzzB
7.33 (2.76)		XF37_RS17685	-166	ATP-grasp domain-containing protein
7.88 (4.19)	adeP	XF37_RS00150	-92	adenine permease AdeP
7.80 (4.04)	rpsP	XF37_RS06285	-91	30S ribosomal protein S16
7.58 (3.36)		XF37_RS18025	-32	type 1 fimbrialprotein
7.51 (4.04)		XF37_RS18060	-44	hypotheticalprotein
8.47 (4.19)	ttdR	XF37_RS03895	-89	DNA-binding transcriptional activator TtdR

Página 106de 162

ANÁLISIS DEL PAPEL DE LA BIODISPONIBILIDAD DE HIERRO Y DEL REGULADOR

TRANSCRIPCIONAL fur EN LA PATOFISIOLOGÍA DE ESCHERICHIA COLI O157:H7 Iannelli, Daniela Noemí

7.27 (3.28)		XF37_RS18270	-262	threonine-rich inner membrane protein GfcA
7.76 (4.04)		XF37_RS10885	-88	hypotheticalprotein
7.26 (4.04)		XF37_RS11815	-88	hypotheticalprotein
8.16 (4.19)	uraA	XF37_RS06880	-87	uracil permease
7.19 (3.51)		XF37_RS18490	-227	general stress protein
7.23 (4.19)		XF37_RS09555	-87	hypotheticalprotein
7.47 (4.04)	kgtP	XF37_RS06390	-86	alpha-ketoglutarate permease
7.47 (4.04)	<i>rhtB</i>	XF37_RS27290	-86	homoserine/homoserine lactone efflux protein
8.11 (4.19)	cadA	XF37_RS25560	-85	lysinedecarboxylaseCadA
8.05 (4.19)	exbB	XF37_RS04150	-83	tol-pal system-associated acyl-CoA thioesterase
7.53 (4.04)		XF37_RS20425	-35	hypotheticalprotein
7.63 (3.34)	yfgJ	XF37_RS06810	-83	zinc ribbon domain-containing protein
7.42 (3.36)	wzy	XF37_RS10015	-83	O157 family O-antigenpolymerase
7.42 (4.19)	cysD	XF37_RS05585	-83	sulfate adenylyltransferasesubunitCysD
7.18 (4.19)		XF37_RS20460	-163	dicarboxylate/amino acid:cationsymporter
7.20 (4.04)		XF37_RS20530	-43	type 1 fimbrialprotein
7.31 (3.37)	уссМ	XF37_RS18240	-82	4Fe-4S bindingprotein
7.30 (3.58)		XF37_RS09265	-82	DUF2190 familyprotein
7.17 (4.04)	ygiQ	XF37_RS04110	-82	YgiQ family radical SAM protein
7.18 (4.19)		XF37_RS21270	-194	RHS repeatprotein

Página 107de 162

ANÁLISIS DEL PAPEL DE LA BIODISPONIBILIDAD DE HIERRO Y DEL REGULADOR

TRANSCRIPCIONAL fur EN LA PATOFISIOLOGÍA DE ESCHERICHIA COLI O157:H7 Iannelli, Daniela Noemí

7.19 (3.28)		XF37_RS07725	-80	helix-turn-helix domain-containing protein
7.67 (4.04)	dcuS	XF37_RS25595	-79	sensor histidinekinase
7.29 (3.51)		XF37_RS22515	-38	adhesin
7.24 (4.04)		XF37_RS23165	-106	hypotheticalprotein
7.72 (4.19)	hycA	XF37_RS05715	-76	formatehydrogenlyaseregulatorHycA
7.18 (3.33)	ompC	XF37_RS14080	-204	porinOmpC
7.78 (4.19)	sad	XF37_RS13805	-75	succinate-semialdehydedehydrogenase
7.41 (3.51)		XF37_RS24845	-185	hypotheticalprotein
7.26 (3.44)	ompL	XF37_RS27040	-75	porinOmpL
7.30 (4.04)		XF37_RS01235	-74	AraCfamilytranscriptionalregulator
7.29 (4.04)		XF37_RS25815	-300	YtcAfamilylipoprotein
7.53 (3.33)	espF	XF37_RS00675	-72	type III secretion system LEE effector EspF
7.28 (4.19)		XF37_RS26755	-111	hypotheticalprotein
7.59 (3.51)	grlA	XF37_RS00540	-69	type III secretion system LEE transcriptional regulator GrlA
7.51 (4.04)	proS	XF37_RS23290	-69	prolinetRNA ligase
7.30 (3.51)	ybcK	XF37_RS09120	-265	recombinase familyprotein
7.68 (3.58)	wzxC	XF37_RS09980	-63	colanic acid undecaprenyl disphosphateflippaseWzxC
8.00 (3.58)		XF37_RS06115	-62	hypotheticalprotein
7.59 (4.04)	emrK	XF37_RS07480	-62	multidrug efflux MFS transporter periplasmic adaptor subunit EmrK
7.30 (4.04)	rfaY	XF37_RS01000	-128	lipopolysaccharide core heptose(II) kinase RfaY

Página 108de 162
ANÁLISIS DEL PAPEL DE LA BIODISPONIBILIDAD DE HIERRO Y DEL REGULADOR

TRANSCRIPCIONAL fur EN LA PATOFISIOLOGÍA DE ESCHERICHIA COLI O157:H7 Iannelli, Daniela Noemí

7.68 (4.19)	ybcL	XF37_RS09125	-204	Raf kinase inhibitor-like protein YbcL
7.93 (4.04)	adhP	XF37_RS14050	-60	alcohol dehydrogenaseAdhP
7.60 (4.04)	ybdO	XF37_RS21065	-81	LysRfamilytranscriptionalregulator
7.32 (4.04)	glnA	XF37_RS27065	-60	glutamateammonia ligase
7.46 (3.23)	ybeF	XF37_RS20945	-60	YbeFfamilytranscriptionalregulator
7.37 (4.19)	ulaG	XF37_RS25250	-59	L-ascorbate 6-phosphate lactonase
7.17 (4.04)		XF37_RS06845	-59	hypotheticalprotein
7.83 (4.04)	yceJ	XF37_RS17355	-96	cytochrome b
7.63 (4.19)	sapA	XF37_RS14765	-57	peptide ABC transporter substrate-binding protein SapA
7.17 (3.37)	ycgV	XF37_RS16025	-76	autotransporter outer membrane beta-barrel domain-containing protein
7.21 (3.44)	ychJ	XF37_RS15855	-128	YchJfamilyprotein
7.39 (4.19)		XF37_RS00385	-56	hypotheticalprotein
8.43 (4.19)	yeiE	XF37_RS08800	-55	DNA-binding transcriptional regulator YeiE
7.39 (3.34)	yciG	XF37_RS14990	-200	general stress protein
7.31 (3.36)	mdtM	XF37_RS24595	-55	multidrug efflux MFS transporter MdtM
7.45 (3.47)		XF37_RS22595	-52	alpha/beta hydrolase
7.62 (3.47)	yciI	XF37_RS15765	-177	YciIfamilyprotein
7.44 (3.33)	yphF	XF37_RS06600	-51	substrate-binding domain-containing protein
7.40 (4.04)	yddA	XF37_RS13955	-104	ABC transporter ATP-binding protein/permease
7.29 (4.19)		XF37_RS04965	-50	hypotheticalprotein

Página 109de 162

ANÁLISIS DEL PAPEL DE LA BIODISPONIBILIDAD DE HIERRO Y DEL REGULADOR

TRANSCRIPCIONAL fur EN LA PATOFISIOLOGÍA DE ESCHERICHIA COLI O157:H7 Iannelli, Daniela Noemí

8.04 (3.19)	ydhU	XF37_RS12885	-90	thiosulfate reductase cytochrome B subunit
7.58 (4.19)	pdeB	XF37_RS21725	-48	cyclic-guanylate-specific phosphodiesterase PdeB
7.37 (4.19)		XF37_RS17710	-48	DUF4236 domain-containingprotein
7.19 (4.19)	yijO	XF37_RS26610	-48	AraCfamilytranscriptionalregulator
7.49 (4.04)		XF37_RS20450	-47	acyclic terpene utilization AtuA family protein
7.67 (4.04)	ydhY	XF37_RS12865	-263	ferredoxin-likeprotein
7.35 (4.04)	ydjA	XF37_RS12405	-126	NAD(P)H nitroreductase
7.27 (3.36)	dcuC	XF37_RS20980	-46	anaerobic C4-dicarboxylate transporterDcuC
7.82 (3.51)	yeiE	XF37_RS08800	-38	DNA-binding transcriptional regulator YeiE
7.92 (4.19)		XF37_RS18115	-45	hypotheticalprotein
7.86 (4.19)		XF37_RS07855	-45	hypotheticalprotein
7.81 (4.19)	yihO	XF37_RS27035	-45	MFS transporter
8.57 (4.19)	iclR	XF37_RS26285	-44	glyoxylate bypass operon transcriptional repressor IclR
7.47 (4.19)	ratA	XF37_RS06240	-44	type II toxin-antitoxin system toxin RatA
7.45 (4.19)	yfeR	XF37_RS07285	-44	LysRfamilytranscriptionalregulator
7.53 (4.04)	yfaA	XF37_RS08475	-216	DUF2138 domain-containingprotein
7.28 (4.04)	yfcV	XF37_RS07915	-77	type 1 fimbrialprotein
7.52 (4.19)	cecR	XF37_RS19810	-42	DNA-binding transcriptional regulator CecR
7.51 (3.51)		XF37_RS18030	-42	molecular chaperone
7.22 (3.14)		XF37_RS24800	-42	MotA/TolQ/ExbB proton channel family protein

Página 110de 162

ANÁLISIS DEL PAPEL DE LA BIODISPONIBILIDAD DE HIERRO Y DEL REGULADOR

TRANSCRIPCIONAL fur EN LA PATOFISIOLOGÍA DE ESCHERICHIA COLI O157:H7 Iannelli, Daniela Noemí

7.21 (4.04)		XF37_RS07750	-42	HNH endonuclease
7.20 (3.34)	yibH	XF37_RS01155	-42	HlyDfamilysecretionprotein
7.85 (4.19)	yhaJ	XF37_RS03665	-114	DNA-binding transcriptional regulator YhaJ
7.74 (4.04)	hxpA	XF37_RS08150	-39	hexitolphosphataseHxpA
9.13 (4.04)	yhhX	XF37_RS02115	-234	oxidoreductase
7.21 (3.36)	yhjR	XF37_RS01470	-270	cellulosebiosynthesisproteinBcsR
7.33 (4.19)	ydeP	XF37_RS13925	-39	acidresistance putative oxidoreductaseYdeP
8.43 (4.19)		XF37_RS20110	-38	hypotheticalprotein
7.35 (3.36)	yiaY	XF37_RS01190	-154	L-threoninedehydrogenase
7.29 (3.58)	yjaB	XF37_RS26315	-30	acetyltransferase
7.51 (2.91)		XF37_RS22730	-37	hypotheticalprotein
7.42 (3.47)	yjcS	XF37_RS25810	-216	alkyl sulfatase YjcS
7.22 (3.19)	escP	XF37_RS00595	-37	type III secretion system LEE needle length regulator EscP
9.04 (4.19)	mdtJ	XF37_RS13250	-36	multidrug/spermidine efflux SMR transporter subunit MdtJ
7.98 (4.04)	glk	XF37_RS07375	-36	glucokinase
7.28 (3.44)	nudK	XF37_RS07040	-36	GDP-mannosepyrophosphataseNudK
7.23 (3.38)		XF37_RS06095	-36	site-specific integrase
7.56 (4.04)		XF37_RS18485	-35	class I SAM-dependent methyltransferase
7.56 (4.04)		XF37_RS16265	-35	class I SAM-dependent methyltransferase
7.46 (4.19)	yjeJ	XF37_RS25490	-50	YjeJfamilyprotein

Página 111de 162

ANÁLISIS DEL PAPEL DE LA BIODISPONIBILIDAD DE HIERRO Y DEL REGULADOR

TRANSCRIPCIONAL fur EN LA PATOFISIOLOGÍA DE ESCHERICHIA COLI O157:H7 Iannelli, Daniela Noemí

7.49 (4.19)	gcd	XF37_RS23645	-34	quinoproteinglucosedehydrogenase
7.47 (3.47)	lgoT	XF37_RS24515	-33	MFS transporter
7.44 (3.36)	hcp	XF37_RS19385	-32	hydroxylaminereductase
7.40 (4.04)	yjgM	XF37_RS24930	-32	GNAT family N-acetyltransferase
7.21 (2.76)	yjfZ	XF37_RS25190	-138	DUF2686 familyprotein
7.33 (3.19)	adhE	XF37_RS15825	-31	bifunctionalacetaldehyde-CoA/alcoholdehydrogenase
7.32 (3.33)	nagA	XF37_RS20730	-30	N-acetylglucosamine-6-phosphate deacetylase
7.44 (4.04)	yjiC	XF37_RS24680	-56	DUF2686 familyprotein
7.49 (3.44)	ynhF	XF37_RS12950	-96	cytochrome bd-I accessory subunit CydH
7.27 (3.19)	yojI	XF37_RS08535	-75	microcin J25 efflux ABC transporter YojI
7.52 (4.04)	ypjA	XF37_RS06080	-300	adhesin-likeautotransporterYpjA/EhaD
7.60 (3.51)	yqeF	XF37_RS05110	-50	acetyl-CoA C-acetyltransferase
7.39 (3.58)	ysdE	XF37_RS00355	-70	proteinYsdE

ANÁLISIS DEL PAPEL DE LA BIODISPONIBILIDAD DE HIERRO Y DEL REGULADOR

TRANSCRIPCIONAL fur EN LA PATOFISIOLOGÍA DE ESCHERICHIA COLI O157:H7 Iannelli, Daniela Noemí

7. ANEXO II

Tabla 12: Analisis de expresión diferencial. Genes expresados diferencialmente en lacepa salvaje cultivada en medio LB limitado en hierro (+ 300 μ M BPD) y la cepa Δfur a diferencia de la cepa salvaje cultivada en medio LB y su anotación estructural según su localización en fagos o en islas genómicas donde: (1) islas de patogenicidad; (2) islas simbióticas; (3) islas metabólicas; y (4) islas de resistencia.

	Density		· · · · · · · · · · · · · · · · · · ·	Secuencia	Fago	Islas	salvaje + BPD vs sal- vaje		∆fur vs salvaje	
Gen ID	Descripción	Gen	Proceso biológico	fur-box	Fago	genómicas	P.Value	Fold Change	P.Value	Fold Change
XF37_RS0 0035	ATP synthasesubunit delta	atpHpapEuncH b3735 JW3713	proton motive force-driven ATP synthesis	No	No	No	3,85E-04	1,66		
XF37_RS0 0040	ATP synthasesubuni- talpha	atpApapAuncA b3734 JW3712	proton motive force-driven ATP synthesis	No	No	No	3,00E-04	1,79		
XF37_RS0 0045	ATP synthase gamma chain	atpGpapCuncG b3733 JW3711	proton motive force-driven ATP synthesis	No	No	No	1,60E-04	1,77	2,02E-04	1,55
XF37_RS0 0130	hypotheticalprotein			Sí	No	No	1,73E-04	-3,19		
XF37_RS0 0255	Sugarphosphatase- YidA	yidA b3697 JW3674		No	No	No	5,53E-03	1,84	8,11E-04	1,66
XF37_RS0 0285	Small heat shock pro- tein IbpA	ibpAhslThtpN b3687 JW3664	negative regulationoftrans- lation	No	No	No	2,85E-04	-1,75	2,22E-04	-1,75
XF37_RS0 0290	Small heat shock pro- tein IbpB	ibpBhslShtpE b3686 JW3663	proteinstabilization	No	No	No	8,93E-03	-3,61	7,70E-03	-3,41
XF37_RS0	type III secretion sys- tem LEE effector	espG		No	No	1			3,76E-02	-1,56

Página 113de 162

ANÁLISIS DEL PAPEL DE LA BIODISPONIBILIDAD DE HIERRO Y DEL REGULADOR

TRANSCRIPCIONAL fur EN LA PATOFISIOLOGÍA DE ESCHERICHIA COLI O157:H7 Iannelli, Daniela Noemí

0480	EspG									
XF37_RS0 0870	hypotheticalprotein			No	Sí	No			1,05E-02	1,58
XF37_RS0 0900	hypotheticalprotein			No	Sí	No			8,10E-03	2,28
XF37_RS0 0930	Orotatephosphori- bosyltransferase	pyrE b3642 JW3617	'de novo' pyrimidinenucleo- basebiosyntheticprocess	No	No	No	1,57E-05	1,96	7,93E-06	1,93
XF37_RS0 0935	Nucleoidocclusion factor SlmA	slmAttkyicB b3641 JW5641	division septum site selec- tion	No	No	No	4,53E-05	1,61		
XF37_RS0 0945	Coenzyme A biosyn- thesis bifunctional protein CoaBC	coaBCdfp b3639 JW5642	coenzyme A biosynthe- ticprocess	No	No	No	7,56E-03	1,68	5,67E-04	1,56
XF37_RS0 1040	2-amino-3- ketobutyrate coenzyme A ligase	kbl b3617 JW3592	biosyntheticprocess	No	No	No	3,76E-04	1,70	9,78E-05	1,63
XF37_RS0 1045	L-threonine 3- dehydrogenase	tdh b3616 JW3591	L-serinebiosyntheticprocess	No	No	No	5,41E-05	1,92	5,81E-05	1,77
XF37_RS0 1065	2 3-bisphosphoglyce- rate-independent phosphoglycerate mu- tase	gpmIpgmIyibO b3612 JW3587	cellularcarbohydratemeta- bolicprocess	No	No	No	1,76E-04	-1,80	5,51E-04	-1,55
XF37_RS0 1075	Glutaredoxin 3	grxCyibM b3610 JW3585	cell redox homeostasis	No	No	No			1,68E-04	2,06
XF37_RS0 1100	L-lactatedehydroge- nase	lldDlctD b3605 JW3580	aerobic respiration	No	No	No	7,44E-03	-1,53		
XF37_RS0 1105	Putative L-lactate-	lldRlctR b3604 JW3579	cellular response to DNA damage stimulus	No	No	No	3,74E-03	-2,15	2,44E-03	-1,75

Página 114de 162

ANÁLISIS DEL PAPEL DE LA BIODISPONIBILIDAD DE HIERRO Y DEL REGULADOR

TRANSCRIPCIONAL fur EN LA PATOFISIOLOGÍA DE ESCHERICHIA COLI O157:H7 Iannelli, Daniela Noemí

	dehydrogenaseoperon- regulatoryprotein									
XF37_RS0 1175	putative GST-like pro- tein YibF	yibF b3592 JW3565	glutathionemetabolicpro- cess	No	No	No	8,96E-04	1,91	1,46E-04	1,73
XF37_RS0 1255	Periplasmicalpha- amylase	malS b3571 JW3543	alpha-glucancatabolicpro- cess	No	No	No	2,32E-02	-2,15	3,03E-02	-1,83
XF37_RS0 1335	Cold shock protei- nCspA	cspAcspS b3556 JW3525	negative regulation of ter- mination of DNA-templated transcription	No	No	No	2,92E-02	-2,54	2,64E-02	-2,99
XF37_RS0 1345	hypotheticalprotein	yiaF b3554 JW5655		No	No	No		-	9,67E-06	-1,76
XF37_RS0 1350	Glyoxylate/hydro- xypyruvatereductase B	ghrBtkrAyiaE b3553 JW5656	D-gluconatemetabolicpro- cess	No	No	No	1,59E-03	2,28	3,37E-03	2,10
XF37_RS0 1455	Cellulosebiosynthesis- proteinBcsG	bcsGyhjU b3538 JW3506	cellulosebiosyntheticpro- cess	No	No	No	6,50E-04	-1,81	4,83E-04	-1,62
XF37_RS0 1550	Cytoplasmictrehalase	treF b3519 JW3487	cellularhyperosmotic response	No	No	No			2,34E-02	1,56
XF37_RS0 1555	hypotheticalprotein	yhjA b3518 JW3486	anaerobicelectrontrans- portchain	No	No	No	3,04E-03	-2,50	2,78E-03	-2,28
XF37_RS0 1600	Acid stress chaperone HdeA	hdeAyhhCyhiB b3510 JW3478	cellular response to acidic pH	No	No	No			3,66E-02	1,69
XF37_RS0 1615	Hemin import ATP- binding protein HmuV	fhuC b0151 JW0147	iron ion import across plasma membrane	No	No	No	1,38E-05	1,97	9,43E-06	2,08
XF37_RS0 1625	hypotheticalprotein			No	No	No	1,44E-03	3,70	2,05E-05	3,72
XF37_RS0	Intracellular heme			No	No	No	4,55E-05	2,07	2,47E-05	1,85

Página 115de 162

ANÁLISIS DEL PAPEL DE LA BIODISPONIBILIDAD DE HIERRO Y DEL REGULADOR

TRANSCRIPCIONAL fur EN LA PATOFISIOLOGÍA DE ESCHERICHIA COLI O157:H7 Iannelli, Daniela Noemí

1630	transport protein HutX									
XF37_RS0 1635	Anaerobilinsynthase	hemNyihJ b3867 JW3838	porphyrin-containing com- pound biosynthetic process	No	No	No	2,22E-04	2,51	2,84E-04	2,38
XF37_RS0 1640	Hemin-binding periplasmic protein HmuT	btuFyadT b0158 JW0154	cobalamintransport	No	No	No	5,79E-03	2,57	1,82E-04	2,80
XF37_RS0 1645	Hemin receptor	cirAcirfeuA b2155 JW2142	iron ion homeostasis	Sí	No	No	1,76E-05	2,23	8,45E-03	4,28
XF37_RS0 1650	Hemintransportprotei- nHemS			No	No	No	2,26E-03	3,88	1,12E-03	6,65
XF37_RS0 1690	Glutathionereductase	gor b3500 JW3467	cell redox homeostasis	No	No	No	2,26E-03	1,55		
XF37_RS0 1850	Nickel-bindingperi- plasmicprotein	nikA b3476 JW3441	negative chemotaxis	No	No	No	9,58E-04	-1,72	3,10E-03	-1,68
XF37_RS0 1880	hypotheticalprotein			No	No	1	3,15E-03	1,63		
XF37_RS0 1945	hypotheticalprotein			No	No	1	1,93E-02	-2,39	2,40E-02	-1,98
XF37_RS0 2020	Leu/Ile/Val-binding protein	livJ b3460 JW3425	branched-chain amino acid transport	Sí	No	No	2,01E-02	1,60	2,44E-03	1,54
XF37_RS0 2155	Aspartate-semialdehy- dedehydrogenase	asdhom b3433 JW3396	'de novo' L-methionine bio- synthetic process	No	No	No	3,99E-05	1,58	2,72E-03	1,55
XF37_RS0 2210	Thiosulfatesulfur- transferaseGlpE	glpE b3425 JW3388	glycerolmetabolicprocess	No	No	No	3,38E-03	1,53		
XF37_RS0 2255	Maltodex- trinphosphorylase	malP b3417 JW5689	alpha-glucancatabolicpro- cess	No	No	No	4,42E-02	-1,70		

Página 116de 162

ANÁLISIS DEL PAPEL DE LA BIODISPONIBILIDAD DE HIERRO Y DEL REGULADOR

TRANSCRIPCIONAL fur EN LA PATOFISIOLOGÍA DE ESCHERICHIA COLI O157:H7 Iannelli, Daniela Noemí

XF37_RS0 2270	Fe/S biogenesis pro- tein NfuA	nfuAgntYyhgI b3414 JW3377	carbonutilization	No	No	No	4,70E-04	1,79	3,69E-04	1,75
XF37_RS0 2290	putative [Fe-S]-de- pendent transcrip- tional repressor FeoC	feoCyhgG b3410 JW3373	ironimportintocell	No	No	No	2,95E-03	-1,89	2,94E-03	-1,60
XF37_RS0 2465	Nitrite reductase (NADH) small subu- nit	nirD b3366 JW3329	anaerobicrespiration	No	No	No	1,81E-02	-3,81	1,83E-02	-3,64
XF37_RS0 2470	Nitritereductase [NAD(P)H]	nirB b3365 JW3328	anaerobicrespiration	No	No	No	4,04E-02	-5,74	4,11E-02	-5,46
XF37_RS0 2510	cAMP-activated global transcriptional regulator CRP	crp cap csm b3357 JW5702	carbon catabolite repression of transcription	No	No	No	7,84E-06	1,62	1,28E-02	1,51
XF37_RS0 2615	Bacterioferritin	bfr b3336 JW3298	intracellular sequestering of iron ion	No	No	No	8,72E-03	-1,58	3,84E-03	-2,67
XF37_RS0 2625	30S ribosomal protein S10	rpsJnusE b3321 JW3283	cytoplasmictranslation	No	No	No	4,67E-02	-1,56	3,73E-02	-1,60
XF37_RS0 2635	50S ribosomal protein L4	rplDeryA b3319 JW3281	cytoplasmictranslation	No	No	No	2,18E-02	-1,66	1,61E-02	-1,87
XF37_RS0 2710	50S ribosomal protein L18	rplR b3304 JW3266	cytoplasmictranslation	No	No	No	4,53E-03	-1,52	1,41E-03	-1,56
XF37_RS0 2925	DNA-bindingprotein Fis	fis b3261 JW3229	DNA-templatedtranscrip- tion	No	No	No	1,99E-02	-1,76	1,63E-02	-1,76
XF37_RS0 3125	Glutamate synthase [NADPH] small chain	gltDaspB b3213 JW3180	ammoniaassimilationcycle	No	No	No	3,63E-04	-1,58		
XF37_RS0 3130	Glutamate synthase [NADPH] large chain	gltBaspB b3212 JW3179	ammoniaassimilationcycle	No	No	No	3,27E-02	-1,53	2,92E-02	-1,57

Página 117de 162

ANÁLISIS DEL PAPEL DE LA BIODISPONIBILIDAD DE HIERRO Y DEL REGULADOR

TRANSCRIPCIONAL fur EN LA PATOFISIOLOGÍA DE ESCHERICHIA COLI O157:H7 Iannelli, Daniela Noemí

XF37_RS0 3145	GlyoxalaseElbB	elbB elb2 yzzB b3209 JW3176	isoprenoidbiosyntheticpro- cess	No	No	No			3,20E-03	1,58
XF37_RS0 3175	Ribosomehibernation- promoting factor	hpfyhbH b3203 JW3170	negative regulationoftrans- lation	No	No	No			4,12E-04	2,11
XF37_RS0 3260	50S ribosomal protein L21	rplU b3186 JW3153	cytoplasmictranslation	No	No	No	2,00E-02	-1,66	7,88E-03	-1,71
XF37_RS0 3355	30S ribosome-binding factor	rbfA P15B yhbB b3167 JW3136	cellular response to DNA damage stimulus	No	No	No	3,15E-02	-1,59		
XF37_RS0 3385	ATP-dependent RNA helicase DeaD	deaDcsdAmssBrhlD b3162 JW5531	cellular response tocold	No	No	No			3,35E-03	-1,72
XF37_RS0 3395	hypotheticalprotein	yhbW b3160 JW3129		No	No	No	3,06E-04	1,68	8,79E-05	1,58
XF37_RS0 3410	Ubiquinone biosyn- thesis accessory factor UbiJ	ubiTyhbT b3157 JW3126	ubiquinone biosynthetic process from chorismate	No	No	No	8,53E-04	-2,37	8,66E-05	-2,93
XF37_RS0 3440	hypotheticalprotein	yraQ b3151 JW3120		No	No	No	2,23E-03	2,30	7,10E-04	1,83
XF37_RS0 3775	Ribosomal RNA large subunit methyltrans- ferase G	rlmGygjO b3084 JW5513	rRNA base methylation	No	No	No	1,31E-03	-1,55	6,72E-04	-1,61
XF37_RS0 3835	Aerotaxis receptor	aer air yqjJ b3072 JW3043	chemotaxis	Sí	No	No	1,63E-02	-2,10	1,56E-02	-2,21
XF37_RS0 3845	NADPH-dependent ferric-chelate reduc- tase	yqjH b3070 JW3041	cellular response to iron ion starvation	Sí	No	No	2,80E-03	1,59	3,53E-05	1,90
XF37_RS0 3855	G/U mismatch-spe- cific DNA glycosylase	mugygjF b3068 JW3040	base-excision repair, AP site formation	No	No	No	1,76E-05	1,57	3,71E-04	1,87

Página 118de 162

ANÁLISIS DEL PAPEL DE LA BIODISPONIBILIDAD DE HIERRO Y DEL REGULADOR

TRANSCRIPCIONAL fur EN LA PATOFISIOLOGÍA DE ESCHERICHIA COLI O157:H7 Iannelli, Daniela Noemí

XF37_RS0 3905	Dihydroneopterinal- dolase	folBygiG b3058 JW3030	folicacidbiosyntheticpro- cess	No	No	No			5,82E-03	-1,52
XF37_RS0 4000	Outermembranepro- teinTolC	tolC colE1-i mtcBmu- kArefI toc weeA b3035 JW5503	bile acid and bile salt transport	No	No	No	1,55E-02	-1,67		
XF37_RS0 4015	3' 5'-cyclic adenosine monophosphate phos- phodiesterase CpdA	cpdAicc b3032 JW3000	cellwallmodification	No	No	No			6,88E-03	1,51
XF37_RS0 4020	hypotheticalprotein	yqiAyzzI b3031 JW2999		No	No	No	4,21E-02	1,56	3,57E-03	1,64
XF37_RS0 4030	Metal-pseudopaline receptor CntO	fhuAtonA b0150 JW0146	iron ion homeostasis	No	No	No			1,88E-02	1,54
XF37_RS0 4050	hypotheticalprotein	fepB b0592 JW0584	cellular response to DNA damage stimulus	No	No	No			7,87E-04	1,56
XF37_RS0 4110	hypotheticalprotein	ygiQygiR b4469 JW5501		Sí	No	No	2,19E-05	-1,69	1,27E-05	-1,79
XF37_RS0 4150	Biopolymertrans- portproteinExbB	exbB b3006 JW2974	bacteriocintransport	Sí	No	No			1,17E-02	2,08
XF37_RS0 4155	Biopolymertrans- portproteinExbD	exbD b3005 JW2973	bacteriocintransport	No	No	No	1,69E-03	2,09	5,62E-03	2,34
XF37_RS0 4185	Hydrogenase-2 small- chain	hybOyghV b2997 JW2965	anaerobicelectrontrans- portchain	No	No	No			5,62E-05	-1,56
XF37_RS0 4190	Formatedehydrogena- senitrate-inducible iron-sulfursubunit	hybA b2996 JW2964	anaerobicelectrontrans- portchain	No	No	No	2,30E-03	-1,82	6,62E-04	-2,06
XF37_RS0 4200	Hydrogenase-2 lar- gechain	hybC b2994 JW2962	anaerobicelectrontrans- portchain	No	No	No			1,13E-02	-1,80

Página 119de 162

ANÁLISIS DEL PAPEL DE LA BIODISPONIBILIDAD DE HIERRO Y DEL REGULADOR

TRANSCRIPCIONAL fur EN LA PATOFISIOLOGÍA DE ESCHERICHIA COLI O157:H7 Iannelli, Daniela Noemí

XF37_RS0 4205	Hydrogenase 2 matu- rationprotease	hybD b2993 JW2961	proteinmodificationprocess	No	No	No			1,06E-03	-1,68
XF37_RS0 4400	putative Fe(2+)-traffi- ckingprotein	yggX b2962 JW2929	cellular response to oxida- tive stress	No	No	No	1,30E-02	2,48	5,41E-03	1,68
XF37_RS0 4425	L-asparaginase 2	ansB b2957 JW2924	asparaginecatabolicprocess	No	No	No	1,27E-02	-3,25	1,37E-02	-3,10
XF37_RS0 4475	Glutathionesynthetase	gshBgsh-11 b2947 JW2914	glutathionebiosyntheticpro- cess	No	No	No	1,21E-04	1,56	5,49E-03	1,52
XF37_RS0 4605	Fructose-bisphospha- tealdolaseclass 2	fbaAfbafda b2925 JW2892	gluconeogenesis	No	No	No	2,33E-03	1,70	4,88E-04	1,59
XF37_RS0 4745	tRNA-modifyingpro- teinYgfZ	ygfZyzzW b2898 JW2866	iron-sulfurclusterassembly	No	No	No	3,47E-03	1,58		
XF37_RS0 4790	Isopentenyl-diphosp- hate Delta-isomerase	idiygfV b2889 JW2857	cellular response to DNA damage stimulus	No	No	No	2,07E-02	1,52	3,91E-04	1,76
XF37_RS0 5345	L-serinedehydratase 2	sdaB b2797 JW2768	gluconeogenesis	No	No	No	4,94E-03	-1,94	1,30E-03	-1,75
XF37_RS0 5585	Sulfate adenylyltrans- ferasesubunit 2	cysD b2752 JW2722	hydrogensulfidebiosynthe- ticprocess	Sí	No	No	8,43E-04	1,64	3,57E-04	1,63
XF37_RS0 5705	Hydrogenasematura- tion factor HypB	hypB b2727 JW2697	proteinmaturation	No	No	No	2,11E-02	-1,88	1,38E-02	-2,16
XF37_RS0 5760	Aryl-phospho-beta-D- glucosidaseBglH	ascB b2716 JW2686	carbohydratecatabolicpro- cess	No	No	No	4,38E-03	-1,63	4,36E-03	-1,52
XF37_RS0 5840	Nicotinamide-nucleo- tideamidohydrolaseP- ncC	pncCygaD b2700 JW2670	pyridinenucleotidebiosynt- heticprocess	No	No	No	3,82E-03	1,58	2,40E-03	1,78
XF37_RS0 5905	S-ribosylhomocys- teinelyase	luxSygaG b2687 JW2662	L-methionine salvage from S-adenosylmethionine	No	No	No	1,59E-03	1,94	2,92E-04	1,93

Página 120de 162

ANÁLISIS DEL PAPEL DE LA BIODISPONIBILIDAD DE HIERRO Y DEL REGULADOR

TRANSCRIPCIONAL fur EN LA PATOFISIOLOGÍA DE ESCHERICHIA COLI O157:H7 Iannelli, Daniela Noemí

XF37_RS0 5940	Glycine betaine/pro- line betaine-binding periplasmic protein	proXproU b2679 JW2654	amino acid import across plasma membrane	No	No	No	2,86E-03	-1,53		
XF37_RS0 5950	Glycine betaine/pro- line betaine transport system ATP-binding protein ProV	proV b2677 JW2652	amino acid import across plasma membrane	No	No	No	2,89E-03	-1,80	4,47E-03	-1,78
XF37_RS0 5955	Ribonucleoside-di- phosphate reductase 2 subunit beta	nrdFygaD b2676 JW2651	deoxyribonucleotide- biosyntheticprocess	No	No	No	1,01E-06	5,83	1,50E-03	4,70
XF37_RS0 5960	Ribonucleoside-di- phosphate reductase 2 subunit alpha	nrdE b2675 JW2650	deoxyribonucleotide- biosyntheticprocess	No	No	No	1,98E-02	4,95	7,50E-03	4,02
XF37_RS0 5965	ProteinNrdI	nrdIygaO b2674 JW2649	proteinmodificationprocess	No	No	No	1,50E-03	2,32	7,90E-05	2,17
XF37_RS0 5970	Glutaredoxin-likepro- teinNrdH	nrdHygaN b2673 JW2648	cell redox homeostasis	No	No	No	4,58E-04	3,67	1,06E-03	2,93
XF37_RS0 5975	hypotheticalprotein	ynjA b1753 JW1742		No	No	No	7,13E-04	1,82	5,08E-05	1,81
XF37_RS0 6000	DNA-bindingprotei- nStpA	stpAhnsB b2669 JW2644		Sí	No	No	4,49E-03	-1,83	1,05E-02	-1,50
XF37_RS0 6215	hypotheticalprotein			Sí	Sí	1	1,98E-02	-1,51	1,19E-02	-1,55
XF37_RS0 6285	30S ribosomal protein S16	rpsP b2609 JW2590	cytoplasmictranslation	Sí	No	No	2,52E-02	-1,73	3,28E-02	-1,65
XF37_RS0 6305	Peptidoglycan-asso- ciatedlipoprotein	yfiB b2605 JW2586		No	No	No	8,71E-03	-1,73	1,45E-02	-1,71

Página 121de 162

ANÁLISIS DEL PAPEL DE LA BIODISPONIBILIDAD DE HIERRO Y DEL REGULADOR

TRANSCRIPCIONAL fur EN LA PATOFISIOLOGÍA DE ESCHERICHIA COLI O157:H7 Iannelli, Daniela Noemí

XF37_RS0 6345	Ribosome-associate- dinhibitor A	raiAyfiA b2597 JW2578	negative regulation of trans- lational elongation	No	No	No	3,14E-05	-3,48		
XF37_RS0 6420	Thioredoxin 2	trxCyfiG b2582 JW2566		No	No	No	5,34E-03	1,69	1,90E-03	1,75
XF37_RS0 6435	Autonomousglycyl ra- dical cofactor	grcAyfiD b2579 JW2563	threoninecatabolicprocess	Sí	No	No	6,15E-04	-2,29	2,75E-03	-1,99
XF37_RS0 6580	Flavohemoprotein	hmpfsrBhmpA b2552 JW2536	cellular response to nitrosa- tive stress	No	No	No	4,77E-03	5,60	7,03E-04	3,06
XF37_RS0 6585	Serinehydroxymethyl- transferase	glyA b2551 JW2535	folicacidmetabolicprocess	No	No	No	6,66E-05	1,70	1,10E-03	1,61
XF37_RS0 6715	2Fe-2S ferredoxin	fdx b2525 JW2509	electrontransportchain	No	No	No	2,42E-04	-1,58	3,11E-04	-1,55
XF37_RS0 6820	Inosine-5'-monop- hosphate dehydroge- nase	guaBguaR b2508 JW5401	GMP biosyntheticprocess	No	No	No	1,99E-04	1,52		
XF37_RS0 6825	GMP synthase [gluta- mine-hydrolyzing]	guaA b2507 JW2491	glutaminemetabolicprocess	No	No	No	5,14E-05	1,52	7,61E-05	1,59
XF37_RS0 6870	Phosphoribosyl- formylglycinamidi- necyclo-ligase	purMpurG b2499 JW2484	'de novo' IMP biosyntheti- cprocess	No	No	No	1,03E-04	1,60		
XF37_RS0 6890	putative proteinYfgD	yfgD b2495 JW2480		No	No	No			6,55E-03	1,58
XF37_RS0 6985	Phosphoribosylami- noimidazole-succino- carboxamidesynthase	purC b2476 JW2461	'de novo' IMP biosyntheti- cprocess	No	No	No	4,91E-03	1,53	3,16E-04	1,71
XF37_RS0 7055	Transaldolase	talA b2464 JW2448	carbohydratemetabolicpro- cess	No	No	No			7,56E-03	1,60

Página 122de 162

ANÁLISIS DEL PAPEL DE LA BIODISPONIBILIDAD DE HIERRO Y DEL REGULADOR

TRANSCRIPCIONAL fur EN LA PATOFISIOLOGÍA DE ESCHERICHIA COLI O157:H7 Iannelli, Daniela Noemí

XF37_RS0 7190	N-acetylmuramic acid 6-phosphate etherase	murQyfeU b2428 JW2421	1,6-anhydro-N-acetyl-beta- muramic acidcatabolicpro- cess	No	No	No	2,87E-02	-1,60		
XF37_RS0 7200	OxidoreductaseUcpA	ucpAyfeF b2426 JW5394		No	No	No	6,29E-03	-1,77	9,67E-04	-1,70
XF37_RS0 7255	Cysteinesynthase A	cysKcysZ b2414 JW2407	cellular amino acid biosyn- thetic process	No	No	No			6,40E-03	1,55
XF37_RS0 7335	hypotheticalprotein	yfeC b2398 JW2393		No	No	No	9,10E-03	-1,69	1,33E-02	-1,61
XF37_RS0 7375	Glucokinase	glk b2388 JW2385	glycolyticprocess	Sí	No	No	1,09E-02	-1,73		
XF37_RS0 7420	Glutamate-pyruvatea- minotransferaseAlaC	alaCyfdZ b2379 JW2376	alaninebiosyntheticprocess	Sí	No	No	7,50E-03	2,48	3,88E-03	2,32
XF37_RS0 7445	ProteinYfdX	yfdX b2375 JW2372		Sí	No	No	4,12E-04	1,50		
XF37_RS0 7895	hypotheticalprotein	yfcZ b2343 JW2340		No	No	No	8,72E-03	-1,80	1,13E-02	-1,66
XF37_RS0 8055	Amidophosphori- bosyltransferase	purF b2312 JW2309	'de novo' IMP biosyntheti- cprocess	No	No	No	2,38E-02	1,57		
XF37_RS0 8070	Histidine-bindingperi- plasmicprotein	hisJ b2309 JW2306	L-histidine import across plasma membrane	Sí	No	No			2,03E-04	1,59
XF37_RS0 8105	Disulfide-bond oxido- reductaseYfcG	yfcG b2302 JW2299	response to oxidative stress	No	No	No		_	2,27E-03	1,59
XF37_RS0 8130	Phosphateacetyltrans- ferase	pta b2297 JW2294	acetatebiosyntheticprocess	No	No	No	1,05E-02	1,74	9,89E-05	1,51
XF37_RS0 8135	Acetatekinase	ackAack b2296 JW2293	acetatebiosyntheticprocess	No	No	No	4,19E-03	1,53	2,47E-03	1,51

Página 123de 162

ANÁLISIS DEL PAPEL DE LA BIODISPONIBILIDAD DE HIERRO Y DEL REGULADOR

TRANSCRIPCIONAL fur EN LA PATOFISIOLOGÍA DE ESCHERICHIA COLI O157:H7 Iannelli, Daniela Noemí

XF37_RS0 8140	hypotheticalprotein	yfbV b2295 JW2292	negative regulation of chro- mosome organization	No	No	No	9,61E-05	-2,05	1,04E-02	-1,93
XF37_RS0 8170	HTH-type transcrip- tional regulator HdfR	lrhAgenR b2289 JW2284	DNA-templatedtranscrip- tion	No	No	No	1,87E-02	-1,55		
XF37_RS0 8180	NADH-quinoneoxido- reductasesubunit B	nuoB b2287 JW5875	aerobic respiration	No	No	No	2,38E-03	-2,71	5,74E-04	-2,74
XF37_RS0 8185	NADH-quinoneoxido- reductasesubunit C/D	nuoCnuoCDnuoD b2286 JW5375	respiratoryelectrontrans- portchain	No	No	No	1,27E-03	-2,19	5,54E-03	-2,26
XF37_RS0 8190	NADH-quinoneoxido- reductasesubunit E	nuoE b2285 JW2280	respiratoryelectrontrans- portchain	No	No	No	2,46E-04	-2,53	2,03E-03	-2,36
XF37_RS0 8195	NADH-quinoneoxido- reductasesubunit F	nuoF b2284 JW2279	aerobic respiration	No	No	No	1,63E-02	-1,78	9,58E-03	-1,83
XF37_RS0 8200	NADH-quinoneoxido- reductasesubunit G	nuoG b2283 JW2278	aerobic respiration	No	No	No	1,79E-02	-2,82	1,71E-02	-2,99
XF37_RS0 8210	NADH-quinone oxi- doreductase subunit I	nuoI b2281 JW2276	aerobic respiration	No	No	No	3,21E-05	-2,63	8,32E-06	-2,70
XF37_RS0 8320	putative 4-deoxy-4- formamido-L-arabi- nose-phos- phoundecaprenol de- formylaseArnD	arnDpmrJyfbH b2256 JW2250	4-amino-4-deoxy-alpha-L- arabinopyranosyl un- decaprenyl phosphate bio- synthetic process	No	No	No	2,42E-03	-1,57		
XF37_RS0 8330	Undecaprenyl-phos- phate 4-deoxy-4-for- mamido-L-arabinose transferase	arnCpmrFyfbF b2254 JW2248	4-amino-4-deoxy-alpha-L- arabinopyranosylun- decaprenylphosphatebio- syntheticprocess	No	No	No	4,39E-02	-1,90		
XF37_RS0 8350	hypotheticalprotein	yfaZ b2250 JW5371		No	No	No	3,39E-02	-1,66	3,24E-02	-1,61

Página 124de 162

ANÁLISIS DEL PAPEL DE LA BIODISPONIBILIDAD DE HIERRO Y DEL REGULADOR

TRANSCRIPCIONAL fur EN LA PATOFISIOLOGÍA DE ESCHERICHIA COLI O157:H7 Iannelli, Daniela Noemí

XF37_RS0 8395	Anaerobic glycerol-3- phosphate dehydroge- nasesubunit C	glpC b2243 JW2237	anaerobicrespiration	No	No	No	1,72E-02	-3,20	1,80E-02	-3,20
XF37_RS0 8400	Anaerobic glycerol-3- phosphate dehydro- genase subunit B	glpB b2242 JW2236	anaerobicrespiration	No	No	No	9,94E-03	-2,32	1,12E-02	-2,16
XF37_RS0 8405	Anaerobic glycerol-3- phosphate dehydro- genase subunit A	glpA b2241 JW2235	anaerobicrespiration	No	No	No	3,26E-02	-2,32	3,30E-02	-2,26
XF37_RS0 8415	Glycerophosphodies- terphosphodiestera- seperiplasmic	glpQ b2239 JW2233	glycerolmetabolicprocess	Sí	No	No	1,70E-03	-2,81	7,95E-04	-2,08
XF37_RS0 8425	HTH-type transcrip- tional regulator GltC	yfaH b2238 JW2232		No	No	No			1,54E-03	1,68
XF37_RS0 8445	Ribonucleoside-di- phosphate reductase 1 subunit beta	nrdBftsB b2235 JW2229	2'-deoxyribonucleotide biosyntheticprocess	No	No	No	1,26E-02	2,11	2,61E-02	2,10
XF37_RS0 8455	Ribonucleoside-di- phosphate reductase 1 subunit alpha	nrdAdnaF b2234 JW2228	2'-deoxyribonucleotide biosyntheticprocess	No	No	No	2,35E-02	2,49	5,48E-03	2,01
XF37_RS0 8515	Outermembranepro- tein C	ompCmeoA par b2215 JW2203	cellular response to DNA damage stimulus	Sí	No	No	4,22E-02	-2,19	2,62E-02	-2,13
XF37_RS0 8540	Malate:quinoneoxido- reductase	mqoyojH b2210 JW2198	tricarboxylicacidcycle	Sí	No	No	8,37E-04	1,50		
XF37_RS0 8560	Periplasmicnitratere- ductase	napAyojCyojDyojE b2206 JW2194	anaerobicrespiration	No	No	No	3,04E-02	-2,65	3,28E-02	-2,48
XF37_RS0 8625	Nitrate/nitrite res-	narP b2193 JW2181	nitrateassimilation	No	No	No	2,56E-03	-1,62		

Página 125de 162

ANÁLISIS DEL PAPEL DE LA BIODISPONIBILIDAD DE HIERRO Y DEL REGULADOR

TRANSCRIPCIONAL fur EN LA PATOFISIOLOGÍA DE ESCHERICHIA COLI O157:H7 Iannelli, Daniela Noemí

	ponse regulatorprotei-									
	nNarL									
XF37_RS0 8655	50S ribosomal protein L25	rplY b2185 JW2173	cytoplasmictranslation	No	No	No	2,61E-02	-1,65	3,33E-02	-1,59
XF37_RS0 8675	putative proteinYejG	yejG b2181 JW2169		No	No	No			4,69E-03	-1,52
XF37_RS0 8790	Endonuclease 4	nfo b2159 JW2146	base-excisionrepair	No	No	No	9,56E-05	1,65		
XF37_RS0 8810	Colicin I receptor	cirAcirfeuA b2155 JW2142	iron ion homeostasis	Sí	No	No	4,67E-04	2,63	3,93E-03	3,20
XF37_RS0 8835	D-galactose-binding periplasmic protein	mglB b2150 JW2137	chemotaxis	Sí	No	No	2,45E-03	-2,11		
XF37_RS0 8855	NAD-dependentdihy- dropyrimidinedehy- drogenasesubunitPreT	preTyeiT b2146 JW2133	pyrimidinenucleobasecata- bolicprocess	No	No	No	3,35E-02	-1,69	2,79E-02	-1,80
XF37_RS0 8870	Cytidinedeaminase	cdd b2143 JW2131	cytidinedeamination	No	No	No			3,14E-04	1,69
XF37_RS0 9070	hypotheticalprotein			No	Sí	1	8,80E-03	-1,94	9,22E-03	-1,97
XF37_RS0 9455	Transcriptionalrepres- sorRcnR	rcnRyohL b2105 JW2092	negative regulation of DNA-templated transcrip- tion	Sí	No	No	8,90E-03	-1,52		
XF37_RS0 9510	Fructose-bisphospha- tealdolaseclass 1	fbaBdhnA b2097 JW5344	glycolyticprocess	No	No	No	4,05E-03	1,56		
XF37_RS0 9565	hypotheticalprotein			No	Sí	1	2,90E-03	-1,67		
XF37_RS0	hypotheticalprotein			No	Sí	1	1,84E-03	-1,76	5,54E-03	-1,55

Página 126de 162

ANÁLISIS DEL PAPEL DE LA BIODISPONIBILIDAD DE HIERRO Y DEL REGULADOR

TRANSCRIPCIONAL fur EN LA PATOFISIOLOGÍA DE ESCHERICHIA COLI O157:H7 Iannelli, Daniela Noemí

9610										
XF37_RS0 9880	hypotheticalprotein			No	No	No	1,88E-02	-1,52		
XF37_RS0 9945	GDP-mannose 4 6- dehydratase	gmdyefAyefN b2053 JW2038	'de novo' GDP-L-fucose- biosyntheticprocess	No	No	No	3,13E-03	1,52	3,64E-02	1,74
XF37_RS0 9950	GDP-L-fucosesynt- hase	fclwcaGyefB b2052 JW2037	'de novo' GDP-L-fucose- biosyntheticprocess	No	No	No	3,37E-02	1,95	1,51E-03	1,60
XF37_RS0 9970	Phosphomannomu- tase/phosphoglucomu- tase	manBcpsGrfbL b2048 JW2033	GDP-mannosebiosynthe- ticprocess	No	No	No			1,09E-03	1,54
XF37_RS1 0010	UDP-Glc:alpha-D- GlcNAc-dip- hosphoundecaprenol beta-1 3-glucosyl- transferase WfgD	yibD b3615 JW3590	cellular response to phos- phate starvation	Sí	No	2, 3 & 4			8,98E-03	-1,57
XF37_RS1 0040	GDP-mannose 4 6- dehydratase	gmdyefAyefN b2053 JW2038	'de novo' GDP-L-fucose- biosyntheticprocess	No	No	2, 3 & 4	1,14E-03	-1,84	5,33E-04	-1,65
XF37_RS1 0090	Histidine biosynthesis bifunctional protein HisIE	hisIhisIE b2026 JW2008	histidinebiosyntheticprocess	No	No	No	5,50E-03	3,03	2,30E-06	2,97
XF37_RS1 0095	Imidazole glycerol phosphate synthase subunit HisF	hisF b2025 JW2007	histidinebiosyntheticprocess	No	No	No	5,56E-03	1,98	3,67E-05	2,17
XF37_RS1 0100	1-(5-phosphoribosyl)- 5-[(5-phosphoribosy- lamino)methylidenea- mino] imidazole-4-	hisA b2024 JW2006	cellular response to DNA damage stimulus	No	No	No	1,16E-02	1,81	2,68E-05	2,00

ANÁLISIS DEL PAPEL DE LA BIODISPONIBILIDAD DE HIERRO Y DEL REGULADOR

TRANSCRIPCIONAL fur EN LA PATOFISIOLOGÍA DE ESCHERICHIA COLI O157:H7 Iannelli, Daniela Noemí

carboxamide isome- rase									
Imidazole glycerol phosphate synthase subunit HisH	hisH b2023 JW2005	glutaminemetabolicprocess	No	No	No	1,53E-03	2,18	5,86E-05	2,23
Histidine biosynthesis bifunctional protein HisB	hisB b2022 JW2004	histidinebiosyntheticprocess	No	No	No	4,79E-04	2,20	1,49E-03	2,26
Histidinol-phospha- teaminotransferase	hisC b2021 JW2003	histidinebiosyntheticprocess	No	No	No	4,50E-03	2,58	2,05E-03	2,73
Histidinoldehydroge- nase	hisD b2020 JW2002	histidinebiosyntheticprocess	No	No	No	1,81E-03	2,25	2,93E-06	2,13
ATP phosphoribosyl- transferase	hisG b2019 JW2001	histidinebiosyntheticprocess	No	No	No	2,72E-05	1,92	2,34E-04	1,99
Putative sulfur carrier protein YeeD	yeeD b2012 JW1994		No	No	No			1,60E-02	1,57
hypotheticalprotein			No	Sí	No	6,25E-04	-1,88		
Shiga toxinsubunit A			No	Sí	No			1,35E-02	1,52
Colicin I receptor	yoeA b4582 JW1980 b1995 b1998	siderophoretransmembrane- transport	No	No	1			3,13E-03	1,51
putative FMN/FAD exporter YeeO	yeeO b1985 JW1965	dipeptidetransmembrane- transport	No	No	No	1,44E-03	1,74	3,08E-02	2,00
hypotheticalprotein			No	Sí	1			2,31E-03	1,57
	carboxamide isome- rase Imidazole glycerol phosphate synthase subunit HisH Histidine biosynthesis bifunctional protein HisB Histidinol-phospha- teaminotransferase Histidinoldehydroge- nase ATP phosphoribosyl- transferase Putative sulfur carrier protein YeeD hypotheticalprotein Shiga toxinsubunit A Colicin I receptor putative FMN/FAD exporter YeeO	carboxamide isome- raseImidazole glycerol phosphate synthase subunit HisHhisH b2023 JW2005Histidine biosynthesis bifunctional protein HisBhisB b2022 JW2004Histidinol-phospha- teaminotransferasehisC b2021 JW2003Histidinoldehydroge- nasehisD b2020 JW2002ATP phosphoribosyl- transferasehisG b2019 JW2001Putative sulfur carrier protein YeeDyeeD b2012 JW1994Shiga toxinsubunit AYoeA b4582 JW1980 b1995 b1998Colicin I receptoryoeA b4582 JW1980 b1995 b1998putative FMN/FAD exporter YeeOyeeO b1985 JW1965hypotheticalproteinyeeO b1985 JW1965	carboxamide isome- raseImidazole glycerol phosphate synthase subunit HisHhisH b2023 JW2005glutaminemetabolicprocessHistidine biosynthesis bifunctional protein HisBhisB b2022 JW2004histidinebiosyntheticprocessHistidinol-phospha- teaminotransferasehisC b2021 JW2003histidinebiosyntheticprocessHistidinolehydroge- nasehisC b2021 JW2002histidinebiosyntheticprocessATP phosphoribosyl- transferasehisG b2019 JW2001histidinebiosyntheticprocessPutative sulfur carrier protein YeeDyeeD b2012 JW1994Letter StateShiga toxinsubunit AyoeA b4582 JW1980 b1995 b1998siderophoretransmembrane- transportPutative FMN/FAD exporter YeeOyeeO b1985 JW1965dipeptidetransmembrane- transport	carboxamide isome- raseisome- raseisse b2023 JW2005glutaminemetabolicprocessNoHistidine biosynthesis bifunctional protein HisBhisB b2022 JW2004histidinebiosyntheticprocessNoHistidinol-phospha- teaminotransferasehisC b2021 JW2003histidinebiosyntheticprocessNoHistidinol-phospha- teaminotransferasehisC b2021 JW2003histidinebiosyntheticprocessNoHistidinoldehydroge- nasehisG b2019 JW2001histidinebiosyntheticprocessNoATP phosphoribosyl- protein YeeDyeeD b2012 JW1994NoShiga toxinsubunit ANoColicin I receptoryoeA b4582 JW1980 b1995 b1998siderophoretransmembrane- transportNoputative FMN/FAD exporter YeeOyeeO b1985 JW1965Migeptidetransmembrane- transportNohypotheticalproteinyeeO b1985 JW1965Migeptidetransmembrane- transportNo	carboxamide isome- rasecarboxamide isome- raseImidazole glycerol phosphate synthase subunit HisHhisH b2023 JW2005glutaminemetabolicprocessNoNoHistidine biosynthesis bifunctional protein HisBhisB b2022 JW2004histidinebiosyntheticprocessNoNoHistidinol-phospha- teaminotransferasehisC b2021 JW2003histidinebiosyntheticprocessNoNoHistidinolehydroge- nasehisC b2021 JW2003histidinebiosyntheticprocessNoNoHistidinoldehydroge- nasehisG b2019 JW2001histidinebiosyntheticprocessNoNoATP phosphoribosyl- transferasehisG b2019 JW2001histidinebiosyntheticprocessNoNoPutative sulfur carrier protein YeeDyeeD b2012 JW1994NoNoSíShiga toxinsubunit AVoeA b4582 JW1980 b1995 b1998siderophoretransmembrane- transportNoNoPutative FMN/FAD exporter YeeOyeeO b1985 JW1965dipeptidetransmembrane- transportNoNohypotheticalproteinVeeO b1985 JW1965dipeptidetransmembrane- transportNoNo	carboxamide isome- raseImidazole glycerol phosphate synthase subunit HisHhisH b2023 JW2005glutaminemetabolicprocessNoNoNoHistidine biosynthesis bifunctional protein HisBhisB b2022 JW2004histidinebiosyntheticprocessNoNoNoHistidinelosynthesis bifunctional protein teaminotransferasehisC b2021 JW2003histidinebiosyntheticprocessNoNoNoHistidinolehydroge- nasehisD b2020 JW2002histidinebiosyntheticprocessNoNoNoATP phosphoribosyl- transferasehisG b2019 JW2001histidinebiosyntheticprocessNoNoNoPutative sulfur carrier protein YeeDyeeD b2012 JW1994NoNoNoNoShiga toxinsubunit ANoSíNoNoColicin I receptor exporter YeeOyeeO b1985 JW1965siderophoretransmembrane- transportNoNoNohypotheticalproteinyeeO b1985 JW1965dipeptidetransmembrane- transportNoNoNohypotheticalproteinyeeO b1985 JW1965dipeptidetransmembrane- transportNoNoNo	carboxamide isome- raseisome- raseImidazole glycerol phosphate synthase subunit HisHhisH b2023 JW2005glutaminemetabolicprocessNoNoNo1,53E-03Histidine biosynthesis bifunctional protein HisBhisB b2022 JW2004histidinebiosyntheticprocessNoNoNo4,79E-04Histidine biosynthesis taminotransferasehisC b2021 JW2003histidinebiosyntheticprocessNoNoNo4,50E-03Histidinol-phospha- teaminotransferasehisC b2021 JW2003histidinebiosyntheticprocessNoNoNo1,81E-03ATP phosphoribosy-1 protein YeeDhisG b2019 JW2001histidinebiosyntheticprocessNoNoNo2,72E-05Putative sulfur carrier protein YeeDyeeD b2012 JW1994NoNoNo2,72E-04Shiga toxinsubunit AveeD b2012 JW1994NoNoNoNoColicin I receptor exporter YeeOyeeO b1985 JW1965siderophoretransmembrane- transportNoNo1Putative FMN/FAD exporter YeeOyeeO b1985 JW1965dipeptidetransmembrane- transportNoNoNo1,44E-03hypotheticalproteinyeeO b1985 JW1965dipeptidetransmembrane- transportNoNoNo1,44E-03hypotheticalproteinyeeO b1985 JW1965dipeptidetransmembrane- transportNoNoNo1,44E-03	carboxamide isome- raseisome- isome- raseisome- i	carboxamide isome- raseisid boxisid boxiii <id box<="" th="">iii<id box<="" th="">ii<id box<="" th="">i<i<id box<="" th="">i<i<id box<="" th="">i<i<id box<="" th="">i<i<i<id box<="" th="">i<i<i<id box<="" th="">i<i<i<i<i<i<i<i<i<i<i<</id></id></id></id></id></id></id></id>

ANÁLISIS DEL PAPEL DE LA BIODISPONIBILIDAD DE HIERRO Y DEL REGULADOR

TRANSCRIPCIONAL fur EN LA PATOFISIOLOGÍA DE ESCHERICHIA COLI O157:H7 Iannelli, Daniela Noemí

XF37_RS1 1145	Protein/nucleicacid- deglycase 1	hchAyedUyzzC b1967 JW1950	DNA repair	No	No	No			1,52E-03	1,57
XF37_RS1 1230	FlagellarproteinFliO	fliOflaPflbD b1947 JW5316	bacterial-typeflagellumor- ganization	No	No	No	2,62E-04	-1,65	5,32E-03	-1,93
XF37_RS1 1235	Flagellar motor switch protein FliN	fliNflaNmotD b1946 JW1930	bacterial-type flagellum-de- pendent swimming motility	No	No	No	1,87E-02	-2,28	1,08E-02	-4,74
XF37_RS1 1240	Flagellar motor switch protein FliM	fliM cheC2 fla AII fla QII b1945 JW1929	bacterial-type flagellum-de- pendent swimming motility	No	No	No			5,63E-03	-2,12
XF37_RS1 1245	hypotheticalprotein	fliL cheC1 fla AI fla QI b1944 JW1928	bacterial-type flagellum-de- pendent swarming motility	No	No	No	2,67E-04	-1,91	1,44E-04	-2,81
XF37_RS1 1270	Flagellar motor switch protein FliG	fliGfla AII.2 fla BII b1939 JW1923	bacterial-typeflagellumas- sembly	No	No	No	1,13E-02	-2,64	8,61E-03	-5,57
XF37_RS1 1275	Flagellar M-ring pro- tein	fliF fla AII.1 fla BI b1938 JW1922	bacterial-type flagellum-de- pendent cell motility	No	No	No	9,97E-03	-2,26	8,66E-03	-3,50
XF37_RS1 1310	Putative sulfur carrier protein YedF	yedF b1930 JW1915	cellular response to DNA damage stimulus	No	No	No	2,62E-04	-1,55		
XF37_RS1 1335	Flagellarsecretion cha- perone FliS	fliS b1925 JW1910	bacterial-typeflagellumas- sembly	No	No	No	8,58E-03	-2,60	6,36E-03	-4,80
XF37_RS1 1340	Flagellarhook-associa- tedprotein 2	fliDflaVflbC b1924 JW1909	bacterial-type flagellum-de- pendent cell motility	No	No	No	4,64E-03	-2,12	6,23E-03	-2,71
XF37_RS1 1345	hypotheticalprotein	fliCflaF hag b1923 JW1908		No	No	No	1,25E-02	-4,41	9,80E-03	-9,39
XF37_RS1 1350	RNA polymerase sigma factor FliA	fliAflaDrpoF b1922 JW1907	bacterial-typeflagellumas- sembly	No	No	No	1,85E-02	-1,66	9,75E-03	-2,97
XF37_RS1 1525	hypotheticalprotein			No	Sí	1			1,73E-02	-1,50

Página 129de 162

ANÁLISIS DEL PAPEL DE LA BIODISPONIBILIDAD DE HIERRO Y DEL REGULADOR

TRANSCRIPCIONAL fur EN LA PATOFISIOLOGÍA DE ESCHERICHIA COLI O157:H7 Iannelli, Daniela Noemí

XF37_RS1 1535	hypotheticalprotein			No	Sí	1			1,93E-02	-1,86
XF37_RS1 1540	hypotheticalprotein			No	Sí	1			7,66E-03	-2,18
XF37_RS1 1575	hypotheticalprotein			No	Sí	1	6,45E-03	-1,83	1,09E-02	-1,85
XF37_RS1 1610	Bacterial non-heme ferritin	ftnAftn gen-165 rsgA b1905 JW1893	cellular response to DNA damage stimulus	No	No	No	4,39E-06	-2,67	1,53E-04	-3,66
XF37_RS1 1630	hypotheticalprotein	yecJ b4537 JW1891		No	No	No			3,47E-03	-2,16
XF37_RS1 1660	Trehalose-6-phosp- hate synthase	otsA b1896 JW5312	cellular response to DNA damage stimulus	No	No	No			3,31E-06	-1,89
XF37_RS1 1690	Chemotaxisprotein- CheA	cheA b1888 JW1877	aerotaxis	No	No	No	2,50E-03	-1,75	3,82E-03	-2,21
XF37_RS1 1695	Chemotaxisprotein- CheW	cheW b1887 JW1876	aerotaxis	No	No	No	1,22E-02	-2,88	1,40E-02	-3,90
XF37_RS1 1700	Methyl-accepting chemotaxis protein II	tarcheM b1886 JW1875	cellular response to amino acid stimulus	No	No	No	2,22E-02	-3,36	1,87E-02	-4,50
XF37_RS1 1720	Chemotaxisprotein- CheY	cheY b1882 JW1871	aerotaxis	No	No	No	5,22E-04	-2,10	1,11E-03	-2,82
XF37_RS1 1725	Proteinphosphatase- CheZ	cheZ b1881 JW1870	bacterial-type flagellum-de- pendent swarming motility	No	No	No	9,01E-03	-2,34	8,18E-03	-3,32
XF37_RS1 1930	Murein DD-endopep- tidaseMepM	mepMyebA b1856 JW5304	capsule polysaccharide- biosyntheticprocess	No	No	No	1,08E-02	-1,72	1,88E-03	-1,84
XF37_RS1 1950	Glucose-6-phosphate 1-dehydrogenase	zwf b1852 JW1841	glucosemetabolicprocess	No	No	No	1,71E-03	1,52		

Página 130de 162

ANÁLISIS DEL PAPEL DE LA BIODISPONIBILIDAD DE HIERRO Y DEL REGULADOR

TRANSCRIPCIONAL fur EN LA PATOFISIOLOGÍA DE ESCHERICHIA COLI O157:H7 Iannelli, Daniela Noemí

XF37_RS1 1970	hypotheticalprotein	yebG b1848 JW1837	DNA repair	No	No	No	9,36E-03	-1,69	7,72E-03	-1,80
XF37_RS1 1975	ProteinYebF	yebF b1847 JW1836		No	No	No	1,58E-02	2,00	2,04E-03	1,90
XF37_RS1 1980	Innermembraneprotei- nYebE	yebE b1846 JW1835		Sí	No	No	1,59E-03	-1,50		
XF37_RS1 2005	ProteinYobA	yobA b1841 JW1830	copper ion transport	No	No	No	2,27E-02	-2,03	3,10E-02	-2,26
XF37_RS1 2015	hypotheticalprotein	yebY b1839 JW1828		No	No	No	1,66E-02	2,15	3,89E-04	2,10
XF37_RS1 2065	ProteaseHtpX	htpX b1829 JW1818	proteolysis	No	No	No	1,76E-04	-1,62		
XF37_RS1 2130	PTS system mannose- specific EIIAB com- ponent	manXgptBptsL b1817 JW1806	glucose import across plasma membrane	No	No	No	5,05E-05	-2,12	1,76E-03	-1,52
XF37_RS1 2205	Carnitinemonooxyge- naseoxygenasesubunit	yeaW b1802 JW5294	carnitinemetabolicprocess	No	No	No	4,53E-03	-2,04	5,67E-03	-1,86
XF37_RS1 2230	putative proteinYeaR	yeaR b1797 JW1786		No	No	No			6,40E-03	2,16
XF37_RS1 2235	ProteinYoaG	yoaG b1796 JW1785		No	No	No			5,24E-03	2,41
XF37_RS1 2275	HTH-type transcrip- tional regulator NimR	nimRyeaM b1790 JW1779	negative regulation of DNA-templated transcrip- tion	No	No	No	2,47E-02	-1,61	2,61E-02	-1,63
XF37_RS1 2315	MltA-interactingpro- tein	mipAyeaF b1782 JW1771	peptidoglycanbiosynthe- ticprocess	No	No	No	2,83E-02	-1,51		

Página 131de 162

ANÁLISIS DEL PAPEL DE LA BIODISPONIBILIDAD DE HIERRO Y DEL REGULADOR

TRANSCRIPCIONAL fur EN LA PATOFISIOLOGÍA DE ESCHERICHIA COLI O157:H7 Iannelli, Daniela Noemí

XF37_RS1 2345	D-arabitol-phosphate- dehydrogenase	ydjL b1776 JW1765		No	No	No	1,43E-02	-1,89	5,60E-03	-1,77
XF37_RS1 2355	putative zinc-type al- cohol dehydrogenase- like protein YdjJ	ydjJ b1774 JW1763		No	No	No	6,53E-03	-1,88	2,26E-03	-1,69
XF37_RS1 2360	putative proteinYdjI	ydjI b1773 JW1762	carbohydratemetabolicpro- cess	No	No	No	6,77E-03	-1,67		
XF37_RS1 2425	NADP-specificgluta- matedehydrogenase	gdhA b1761 JW1750	glutamatebiosyntheticpro- cess	No	No	No			2,85E-02	1,69
XF37_RS1 2445	Thiosulfatesulfur- transferaseYnjE	ynjE b1757 JW5287	transsulfuration	No	No	No	6,70E-04	-1,57	1,13E-04	-1,59
XF37_RS1 2515	Periplasmic chaperone Spy	spy b1743 JW1732	chaperone-mediatedprotein- folding	No	No	No			3,28E-03	1,90
XF37_RS1 2550	PTS system N N'-di- acetylchitobiose-spe- cific EIIA component	chbAcelC b1736 JW1725	N,N'-diacetylchitobioseim- port	No	No	No	9,43E-03	-1,84	1,40E-02	-1,68
XF37_RS1 2615	ATP-dependent 6- phosphofructokinase isozyme 2	pfkB b1723 JW5280	cellular response to DNA damage stimulus	No	No	No	3,21E-03	1,56	5,85E-03	1,73
XF37_RS1 2720	Phosphoenolpyruva- tesynthase	ppsApps b1702 JW1692	gluconeogenesis	No	No	No	1,38E-03	1,87	8,65E-03	1,70
XF37_RS1 2800	putative protein	ydiJ b1687 JW1677	lactatecatabolicprocess	No	No	No	4,00E-03	-2,19	2,63E-03	-2,19
XF37_RS1 2810	hypotheticalprotein	ydiH b1685 JW1675		No	No	No			2,05E-02	1,52
XF37_RS1 2815	ProteinSufA	sufAydiC b1684 JW1674	iron-sulfurclusterassembly	Sí	No	No	2,08E-03	2,60	1,05E-03	2,48

Página 132de 162

ANÁLISIS DEL PAPEL DE LA BIODISPONIBILIDAD DE HIERRO Y DEL REGULADOR

TRANSCRIPCIONAL fur EN LA PATOFISIOLOGÍA DE ESCHERICHIA COLI O157:H7 Iannelli, Daniela Noemí

XF37_RS1 2820	FeS cluster assembly protein SufB	sufBynhE b1683 JW5273	iron-sulfurclusterassembly	No	No	No	2,04E-06	3,84	4,80E-04	3,10
XF37_RS1 2825	putative ATP-depend- ent transporter SufC	sufCynhD b1682 JW1672	iron-sulfurclusterassembly	No	No	No	1,70E-03	3,51	3,20E-04	3,22
XF37_RS1 2830	FeS cluster assembly protein SufD	sufDynhC b1681 JW1671	iron-sulfurclusterassembly	No	No	No	5,41E-07	3,54	1,87E-03	2,98
XF37_RS1 2835	Cysteine desulfurase	sufScsdBynhB b1680 JW1670	iron-sulfurclusterassembly	No	No	No		-	4,63E-04	2,21
XF37_RS1 2840	Cysteinedesulfuration- proteinSufE	sufEynhA b1679 JW1669	iron-sulfurclusterassembly	No	No	No	1,20E-03	1,98	1,24E-03	1,95
XF37_RS1 2885	Putative cytoch- romeYdhU	ydhU b1670 JW1660	respiratoryelectrontrans- portchain	Sí	No	No	4,41E-04	1,51		
XF37_RS1 2960	Superoxidedismutase [Fe]	sodB b1656 JW1648	removalofsuperoxideradi- cals	No	No	No	5,52E-03	-2,24	3,13E-03	-4,95
XF37_RS1 2970	Glutaredoxin 4	grxDydhD b1654 JW1646	cell redox homeostasis	Sí	No	No			8,05E-03	-1,60
XF37_RS1 3010	Superoxidedismutase [Cu-Zn]	sodC b1646 JW1638	removalofsuperoxideradi- cals	No	No	No	3,21E-03	1,55	3,01E-02	2,33
XF37_RS1 3055	TyrosinetRNA li- gase	tyrS b1637 JW1629	tRNAaminoacylation	No	No	No	4,33E-05	1,62		
XF37_RS1 3075	Endonuclease III	nth b1633 JW1625	base-excision repair, AP site formation	No	No	No	1,38E-03	-2,05	2,96E-04	-1,82
XF37_RS1 3115	OriC-binding nucle- oid-associated protein	cnuydgT b1625 JW1617	negative regulation of DNA-templated transcrip- tion	No	No	No	8,39E-03	-1,74		
XF37_RS1 3130	Adenosinedeaminase	add b1623 JW1615	adenosinecatabolicprocess	No	No	No			5,10E-03	1,60

Página 133de 162

ANÁLISIS DEL PAPEL DE LA BIODISPONIBILIDAD DE HIERRO Y DEL REGULADOR

TRANSCRIPCIONAL fur EN LA PATOFISIOLOGÍA DE ESCHERICHIA COLI O157:H7 Iannelli, Daniela Noemí

XF37_RS1 3150	7-alpha-hydroxyste- roid dehydrogenase	hdhAhsdH b1619 JW1611	bileacidcatabolicprocess	No	No	No			2,24E-03	1,71
XF37_RS1 3175	ProteinYdgA	ydgA b1614 JW1606	bacterial-type flagellum-de- pendent swarming motility	No	No	No	1,48E-02	-1,61		
XF37_RS1 3185	Fumaratehydrata- seclassI aerobic	fumA b1612 JW1604	tricarboxylicacidcycle	No	No	No	3,05E-02	-1,69	1,82E-02	-2,37
XF37_RS1 3190	Fumaratehydrata- seclass II	fumC b1611 JW1603	fumaratemetabolicprocess	No	No	No	2,86E-04	1,71	1,89E-02	1,80
XF37_RS1 3295	ATP-dependent dethi- obiotin synthetase BioD 1	bioD2 ynfK b1593 JW5264	biotinbiosyntheticprocess	Sí	No	No	1,25E-03	-1,76	1,42E-03	-1,71
XF37_RS1 3345	hypotheticalprotein	ynfB b1583 JW1575		No	No	No	2,49E-03	-1,53		
XF37_RS1 3400	hypotheticalprotein			No	No	1	1,24E-02	1,52		
XF37_RS1 3475	Crossover junctionen- dodeoxyribonu- cleaseRusA	rusA rus ybcP b0550 JW0538	DNA recombination	No	Sí	1	3,25E-02	-1,85	3,33E-02	-1,85
XF37_RS1 3895	Type-1 fimbrialpro- tein Achain	fimApilA b4314 JW4277	celladhesion	Sí	No	No	2,06E-03	-2,10	5,71E-03	-2,26
XF37_RS1 3900	Chaperone protein- FocC	fimC b4316 JW4279	cellwallorganization	No	No	No	2,70E-03	-2,90	1,14E-03	-2,39
XF37_RS1 3905	Outer membrane usher protein FimD	fimD b4317 JW5780	pilusassembly	No	No	No	3,88E-04	-1,65	2,52E-04	-1,66
XF37_RS1 3915	ProteinFimG	ydeR b1503 JW1497	cell adhesion involved in single-species biofilm for- mation	No	No	No	2,74E-04	-2,25	2,41E-04	-1,83

Página 134de 162

ANÁLISIS DEL PAPEL DE LA BIODISPONIBILIDAD DE HIERRO Y DEL REGULADOR

TRANSCRIPCIONAL fur EN LA PATOFISIOLOGÍA DE ESCHERICHIA COLI O157:H7 Iannelli, Daniela Noemí

Type 1 fimbrin D- mannose specific ad- hesin	ydeQ b1502 JW1496	cell adhesion involved in single-species biofilm for- mation	No	No	No	3,32E-04	-1,51		
hypotheticalprotein	pqqLyddC b1494 JW1489	proteolysis	No	No	No		-	1,16E-03	1,87
putative D D-dipep- tide transport ATP- binding protein DdpF	ddpFyddO b1483 JW1478	dipeptidetransport	No	No	No	4,44E-05	-2,16	2,54E-04	-2,69
PeroxiredoxinOsmC	osmC b1482 JW1477	hyperosmotic response	No	No	No			2,31E-02	1,82
Alcohol dehydroge- nase propanol-prefe- rring	adhPyddN b1478 JW1474	acetaldehydecatabolicpro- cess	Sí	No	No	7,25E-04	1,50	4,61E-02	1,74
Formatedehydrogena- senitrate-inducible iron-sulfursubunit	fdnH b1475 JW1471	anaerobicelectrontrans- portchain	No	No	No	1,30E-02	-2,49	1,69E-02	-2,31
Formatedehydrogena- senitrate-inducible majorsubunit	fdnG b1474 JW1470	anaerobicelectrontrans- portchain	No	No	No	3,72E-02	-1,89	4,47E-02	-1,74
putative isomera- seYddE	yddE b1464 JW1459	biosyntheticprocess	Sí	No	No			5,23E-03	1,65
Arylamine N-acetyl- transferase	nhoAyddI b1463 JW1458		No	No	No	1,93E-03	1,52	1,70E-03	1,52
putative proteinYncE	yncE b1452 JW1447		No	No	No	1,72E-04	2,15	9,94E-04	3,04
putative proteinYdcY	ydcY b1446 JW1441		No	No	No	3,51E-02	-1,50		
	Type 1 fimbrin D- mannose specific ad- hesinhypotheticalproteinputative D D-dipep- tide transport ATP- binding protein DdpFPeroxiredoxinOsmCAlcohol dehydroge- nase propanol-prefe- rringFormatedehydrogena- senitrate-inducible iron-sulfursubunitFormatedehydrogena- senitrate-inducible majorsubunitputative isomera- seYddEArylamine N-acetyl- transferaseputative proteinYncEputative proteinYncE	Type 1 fimbrin D- mannose specific ad- hesinydeQ b1502 JW1496hypotheticalprotein $pqqLyddC b1494$ JW1489putative D D-dipep- tide transport ATP- binding protein DdpF $ddpFyddO b1483$ JW1478PeroxiredoxinOsmC $osmC b1482 JW1477$ Alcohol dehydroge- nase propanol-preferring $adhPyddN b1478$ JW1474Formatedehydrogena- senitrate-inducible majorsubunit $fdnH b1475 JW1471$ Formatedehydrogena- senitrate-inducible majorsubunit $yddE b1464 JW1459$ Putative isomera- seYddE $yddE b1464 JW1459$ putative proteinYncE $yncE b1452 JW1447$ putative proteinYncE $ydcY b1446 JW1441$	Type 1 fimbrin D- mannose specific ad- hesinydeQ b1502 JW1496cell adhesion involved in single-species biofilm for- mationhypotheticalproteinpqqLyddC b1494 JW1489proteolysisputative D D-dipep- tide transport ATP- binding protein DdpFddpFyddO b1483 JW1478dipeptidetransportPeroxiredoxinOsmCosmC b1482 JW1477hyperosmotic responseAlcohol dehydroge- nase propanol-prefer rringadhPyddN b1478 JW1474acetaldehydecatabolicpro- cessFormatedehydrogena- senitrate-inducible iron-sulfursubunitfdnH b1475 JW1471 fdnG b1474 JW1470anaerobicelectrontrans- portchainputative isomera- seYddEyddE b1464 JW1459biosyntheticprocessputative proteinYncEyncE b1452 JW1447Letter Letter Lett	Type 1 fimbrin D- mannose specific ad- hesinydeQ b1502 JW1496cell adhesion involved in single-species biofilm for- mationNohypotheticalproteinpqqLyddC b1494 JW1489proteolysisNoputative D D-dipep- tide transport ATP- binding protein DdpFddpFyddO b1483 JW1478dipeptidetransportNoPeroxiredoxinOsmCosmC b1482 JW1477hyperosmotic responseNoAlcohol dehydroge- nase propanol-prefer rringadhPyddN b1478 JW1474acetaldehydecatabolicpro- cessSíFormatedehydrogena- senitrate-inducible iron-sulfursubunitfdnH b1475 JW1471 fdnG b1474 JW1470anaerobicelectrontrans- portchainNoPutative isomera- seYddEyddE b1464 JW1459biosyntheticprocessSíArylamine N-acetyl- transferaseyncE b1452 JW1447Noputative proteinYncEyncE b1452 JW1447No	Type I fimbrin D- mannose specific ad- hesinydeQ b1502 JW1496cell adhesion involved in single-species biofilm for- mationNoNohypotheticalprotein $pqqLyddC b1494$ JW1489proteolysisNoNoputative D D-dipep- tide transport ATP- binding protein DdpF $ddpFyddO b1483$ JW1478dipeptidetransportNoNoPeroxiredoxinOsmCosmC b1482 JW1477hyperosmotic responseNoNoAlcohol dehydroge- nase propanol-prefe- rring $ddhPyddN b1478$ JW1474acetaldehydecatabolicpro- cessSíNoFormatedehydrogena- senitrate-inducible majorsubunit $fdnH b1475 JW1471$ $fdnG b1474 JW1470$ anaerobicelectrontrans- portchainNoNoPutative isomera- seYddE $yddE b1464 JW1459$ biosyntheticprocessSíNoArylamine N-acetyl- transferase $yncE b1452 JW1447$ NoNoNoputative proteinYncE $yncE b1452 JW1441$ NoNoNo	Type 1 fimbrin D- mannose specific ad- hesinydeQ b1502 JW1496cell adhesion involved in single-species biofilm for- mationNoNoNohypotheticalproteinpqqLyddC b1494 JW1489proteolysisNoNoNoputative D D-dipep- tide transport ATP- binding protein DdpFddpFyddO b1483 JW1478dipeptidetransportNoNoNoPeroxiredoxinOSmCosmC b1482 JW1477hyperosmotic responseNoNoNoAlcohol dehydroge- nase propanol-prefe- rringadhPyddN b1478 JW1474acetaldehydecatabolicpro- cessSíNoNoFormatedehydrogena- senitrate-inducible majorsubunitfdnH b1475 JW1471anaerobicelectrontrans- portchainNoNoNoPutative isomera- seYddEyddE b1464 JW1459biosyntheticprocessSíNoNoNoputative proteinYncEyncE b1452 JW1441NoNoNoNo	Type 1 fimbrin D- mannose specific ad- hesinydeQ b1502 JW1496cell adhesion involved in single-species biofilm for- mationNoNoNoNo3,32E-04hypotheticalproteinPqqLyddC b1494 JW1489proteolysisNoNoNoNoputative D D-dipep- tide transport ATP- binding protein DdpFddpFyddO b1483 JW1478dipeptidetransportNoNoNoA.44E-05PeroxiredoxinOsmCosmC b1482 JW1477hyperosmotic responseNoNoNoNoAlcohol dehydrogen- nase propanol-prefer rringadhPyddN b1478 JW1474acetaldehydecatabolicpro- cessSíNoNoNoFormatedehydrogena- senitrate-inducible majorsubunitfdnH b1475 JW1471anaerobicelectrontrans- portchainNoNoNo1,30E-02Putative isomera- seYddEyddE b1464 JW1470biosyntheticprocessSíNoNoNoArylamine N-acetyl- transferasenhoAyddI b1463 JW1458biosyntheticprocessSíNoNo1,93E-03putative proteinYnCE yncz b1452 JW1447yncz b1452 JW1447NoNoNoNo1,72E-04putative proteinYnCEyncz b1452 JW1441NoNoNoNo1,72E-04	Type 1 fimbrin D- mannose specific ad- hesinydeQ b1502 JW1496cell adhesion involved in single-species biofilm for- mationNoNoNo3,32E-04-1,51hypotheticalproteinPqqLyddC b1494 JW1489proteolysisNoNoNoNoNoputative D D-dipep- tide transport ATP- binding protein DdpfddpFyddO b1483 W1478dipeptidetransportNoNoNoNo4.44E-052,16PeroxiredoxinOsmCosmC b1482 JW1477hyperosmotic responseNoNoNoNo1.50Alcohol dehydroge- nase propanol-prefe- rringadhPyddN b1478 W1474acetaldehydecatabolicpro- cessSíNoNoNo7,25E-041,50Formatedehydrogena senitrate-inducible iron-sulfursubunitfdnB b1475 JW1471anaerobicelectrontrans- portchainNoNoNo1,30E-02-2,49Putative isomera- seYddEyddE b1464 JW1450biosyntheticprocessSíNoNoNo1,52Putative isomera- seYddEmhoAyddI b1633 JW1458ibosyntheticprocessSíNoNo1,93E-031,52Putative proteinYneEyncE b1452 JW1447ibosyntheticprocessSíNoNo1,72E-042,15putative proteinYneEyncE b1452 JW1447ibosyntheticprocessNoNoNo1,72E-042,15putative proteinYneEyncE b1452 JW1447ibosyntheticprocessNoNoNo1,72E-042,15putative proteinYneEyncE b1452 JW1447	Type 1 fimbrin D- mannoe specific ad- hesinydeQ b1502 JW1496cell adhesion involved in single-species biofilm for- mationNoNoNoNo3,32E-04-1,51hypotheticalproteinPaqLyddC b1494 JW1489proteolysisNoNoNoNoNoNoputative D D-dipep- tide transport ATP- binding protein DdpFddpFyddO b1483 JW1478dipeptidetransportNoNoNoNo4,44E-05-2,162,54E-04PeroxiredoxinOsmCosmC b1482 JW1477hyperosmotic responseNoNoNoNoNo2,31E-02Alcohol dehydrogen ase propanol-prefe mase propanol-prefe mase propanol-prefer ase transportacetaldehydecatabolicpro- cessSiNoNoNo1,30E-02-2,491,69E-02Formatedehydrogena- senitrate-inducible majorsubunitfdnG b1474 JW1470anaerobicelectrontrans- portchainNoNoNoNo3,32E-041,69E-02Formatedehydrogena- senitrate-inducible majorsubunitfdnG b1474 JW1470anaerobicelectrontrans- portchainNoNoNoNo1,30E-02-2,491,69E-02Formatedehydrogena- senitrate-inducible majorsubunitfdnG b1474 JW1470anaerobicelectrontrans- portchainNoNoNoNo1,30E-02-1,894,47E-02Putative isomera- sery dEyddE b1464 JW1459biosyntheticprocessSiNoNoNo1,93E-031,521,70E-03putative proteinYne transferaseyncE b1452 JW14

Página 135de 162

ANÁLISIS DEL PAPEL DE LA BIODISPONIBILIDAD DE HIERRO Y DEL REGULADOR

TRANSCRIPCIONAL fur EN LA PATOFISIOLOGÍA DE ESCHERICHIA COLI O157:H7 Iannelli, Daniela Noemí

XF37_RS1 4280	23S rRNA 5-hydro-	rlhAydcP b1435 IW1431	rRNAmodification	No	No	No	1,06E-02	-1,90	8,44E-03	-1,90
XF37_RS1 4300	Telluritemethyltrans- ferase	tehB b1430 JW1426	methylation	No	No	No	2,47E-03	2,29	3,47E-04	1,99
XF37_RS1 4465	D-lactatedehydroge- nase	ldhAhslIhtpH b1380 JW1375	mixedacidfermentation	Sí	No	No	1,13E-03	2,11	1,51E-03	1,98
XF37_RS1 4610	Thiolperoxidase	tpxyzzJ b1324 JW1317	cellular response to oxida- tive stress	No	No	No			4,58E-04	1,63
XF37_RS1 4690	Thiosulfatesulfur- transferasePspE	pspE b1308 JW1301		No	No	No			1,77E-02	1,64
XF37_RS1 4710	Phage shock protein A	pspA b1304 JW1297	negative regulation of DNA-binding transcription factor activity	No	No	No	1,41E-02	-1,55	2,26E-02	-1,60
XF37_RS1 4845	hypotheticalprotein	yciZ b4596 JW1277		No	No	No	1,11E-02	-1,91		
XF37_RS1 4980	Tryptophansynthase beta chain	trpB b1261 JW1253	aromatic amino acid family biosynthetic process	No	No	No	3,21E-04	1,53	8,69E-03	1,54
XF37_RS1 5170	hypotheticalprotein			No	Sí	1	1,23E-02	-1,60		
XF37_RS1 5480	hypotheticalprotein			No	Sí	1			1,52E-03	2,50
XF37_RS1 5765	ProteinYciI	yciI b1251 JW1243		Sí	No	No	7,94E-03	1,65	1,73E-03	1,63
XF37_RS1 5895	Nitrate reductase mo- lybdenum cofactor as- sembly chaperone NarJ	narJ b1226 JW1217	chaperone-mediated protein complex assembly	No	No	No	1,74E-02	-3,66	1,77E-02	-3,33

Página 136de 162

ANÁLISIS DEL PAPEL DE LA BIODISPONIBILIDAD DE HIERRO Y DEL REGULADOR

TRANSCRIPCIONAL fur EN LA PATOFISIOLOGÍA DE ESCHERICHIA COLI O157:H7 Iannelli, Daniela Noemí

XF37_RS1 5900	Respiratory nitrate re- ductase 1 beta chain	narH b1225 JW1216	anaerobicelectrontrans- portchain	No	No	No	4,58E-02	-3,65	4,80E-02	-3,33
XF37_RS1 5905	Respiratory nitrate re- ductase 1 alpha chain	narGbisDnarC b1224 JW1215	anaerobicelectrontrans- portchain	No	No	No	4,82E-02	-3,75	4,84E-02	-3,69
XF37_RS1 5940	Putative cation transport regulator ChaB	chaB b1217 JW1208		No	No	No			4,68E-04	1,71
XF37_RS1 6170	hypotheticalprotein	ycgN b1181 JW5180		No	No	No	3,57E-03	-3,35	3,42E-04	-3,35
XF37_RS1 6195	hypotheticalprotein	ycgJ b1177 JW1166		No	No	No		_	5,30E-04	1,83
XF37_RS1 6235	Protease 7	ompT b0565 JW0554	proteolysis	No	No	1	4,73E-02	-2,82		
XF37_RS1 6240	Carboxylesterase B			No	No	1	6,88E-04	-1,90		
XF37_RS1 6370	hypotheticalprotein			No	Sí	1			1,79E-05	2,46
XF37_RS1 6525	Isocitratedehydroge- nase [NADP]	icdicdAicdE b1136 JW1122	electrontransportchain	No	Sí	No	3,80E-04	2,19	1,33E-02	2,25
XF37_RS1 6615	hypotheticalprotein			No	Sí	No			1,24E-02	1,57
XF37_RS1 6975	hypotheticalprotein	ydaW b1361 JW5211		No	Sí	1			6,42E-03	1,53
XF37_RS1 7010	hypotheticalprotein			No	Sí	1	9,69E-06	-1,62	9,77E-04	-1,54
XF37_RS1 7075	putative L D-transpep- tidaseYcfS	ycfS b1113 JW5820	cellwallorganization	No	No	No	9,90E-04	-2,06	2,50E-03	-2,06

Página 137de 162

ANÁLISIS DEL PAPEL DE LA BIODISPONIBILIDAD DE HIERRO Y DEL REGULADOR

TRANSCRIPCIONAL fur EN LA PATOFISIOLOGÍA DE ESCHERICHIA COLI O157:H7 Iannelli, Daniela Noemí

XF37_RS1 7125	Purinenucleosi- dephosphoramidase	hinTycfF b1103 JW1089	D-alaninecatabolicprocess	No	No	No	1,77E-02	-1,59		
XF37_RS1 7225	Flagellarhook-associa- tedprotein 3	flgLflaTflaU b1083 JW1070	bacterial-type flagellum-de- pendent cell motility	No	No	No	6,52E-03	-1,62	2,18E-03	-3,14
XF37_RS1 7230	Flagellarhook-associa- tedprotein 1	flgKflaSflaW b1082 JW1069	bacterial-typeflagellumas- sembly	No	No	No	1,64E-02	-1,88	8,24E-03	-3,73
XF37_RS1 7235	Peptidoglycanhydrola- seFlgJ	flgJ fla FX flaZ b1081 JW1068	bacterial-typeflagellumas- sembly	No	No	No			2,55E-02	-1,84
XF37_RS1 7240	Flagellar P-ring pro- tein	flgI fla FIX flaM b1080 JW1067	bacterial-type flagellum-de- pendent cell motility	No	No	No	1,54E-03	-2,10	2,49E-03	-4,28
XF37_RS1 7245	Flagellar L-ring pro- tein	flgHfla FVIII flaY b1079 JW5153	bacterial-type flagellum-de- pendent cell motility	No	No	No	2,88E-04	-1,55	2,88E-06	-2,58
XF37_RS1 7255	Flagellar basal-body rod protein FlgF	flgFfla FVI flaX b1077 JW1064	bacterial-type flagellum-de- pendent cell motility	No	No	No			2,41E-02	-2,21
XF37_RS1 7260	Flagellarhookprotein- FlgE	flgE fla FV flaK b1076 JW1063	bacterial-type flagellum-de- pendent swarming motility	No	No	No	3,47E-02	-1,71	1,66E-02	-2,77
XF37_RS1 7265	Basal-body rod modi- fication protein FlgD	flgDfla FIV flaV b1075 JW1062	bacterial-typeflagellumor- ganization	No	No	No	1,88E-02	-2,52	1,18E-02	-7,61
XF37_RS1 7280	Flagella basal body P- ring formation protein FlgA	flgA b1072 JW1059	bacterial-typeflagellumas- sembly	No	No	No			1,94E-03	-1,88
XF37_RS1 7285	Negative regulator of flagellin synthesis	flgM b1071 JW1058	bacterial-typeflagellumor- ganization	No	No	No	1,64E-02	-1,67	9,99E-03	-3,42
XF37_RS1 7290	Flagellasynthesispro- teinFlgN	flgN b1070 JW1057	bacterial-typeflagellumas- sembly	No	No	No	6,73E-03	-2,16	8,68E-03	-3,64
XF37_RS1 7320	Glutaredoxin 2	grxB b1064 JW1051		No	No	No			1,56E-03	1,83

Página 138de 162

ANÁLISIS DEL PAPEL DE LA BIODISPONIBILIDAD DE HIERRO Y DEL REGULADOR

TRANSCRIPCIONAL fur EN LA PATOFISIOLOGÍA DE ESCHERICHIA COLI O157:H7 Iannelli, Daniela Noemí

XF37_RS1 7340	BiofilmregulatorBssS	bssSyceP b1060 JW5152	regulation of single-species biofilm formation	No	No	No	5,63E-03	-1,52		
XF37_RS1 7640	Colicin I receptor	cirAcirfeuA b2155 JW2142	iron ion homeostasis	Sí	Sí	1			7,10E-03	1,81
XF37_RS1 7680	General stress protein 16U			No	Sí	1		_	1,69E-03	1,60
XF37_RS1 7980	hypotheticalprotein	fabFfabJ b1095 JW1081	fattyacidbiosyntheticpro- cess	No	No	1	6,44E-04	-4,52		
XF37_RS1 8010	hypotheticalprotein			No	No	1	2,12E-04	-3,04		
XF37_RS1 8100	Deferrochelatase/per- oxidaseEfeB	efeBycdB b1019 JW1004	cellular response to DNA damage stimulus	No	No	No	3,16E-04	1,61	1,19E-03	1,82
XF37_RS1 8105	Iron uptake system component EfeO	efeOycdO b1018 JW1003	response toantibiotic	No	No	No	5,17E-03	3,11	2,25E-04	3,69
XF37_RS1 8190	Glucose-1-phospha- tase	agp b1002 JW0987	dephosphorylation	No	No	No			4,44E-02	1,56
XF37_RS1 8260	Cold shock-like pro- tein CspG	cspGcspI b0990 JW0974	negative regulation of ter- mination of DNA-templated transcription	No	No	No	1,85E-02	-2,02	1,69E-02	-1,93
XF37_RS1 8280	hypotheticalprotein	gfcCymcB b0985 JW0968		No	No	No	8,47E-03	-1,55		
XF37_RS1 8300	Tyrosine-proteinki- naseetk	etkyccC b0981 JW0964	extracellularpolysaccharide- biosyntheticprocess	No	No	No	4,67E-02	-1,58		
XF37_RS1 8485	hypotheticalprotein	ybcY b0562 JW0551		Sí	No	1	7,37E-03	-1,54		
XF37_RS1 8660	Antigen 43	flu yeeQyzzX b2000 JW1982		No	No	No	5,11E-03	-1,93	2,14E-03	-2,45

Página 139de 162

ANÁLISIS DEL PAPEL DE LA BIODISPONIBILIDAD DE HIERRO Y DEL REGULADOR

TRANSCRIPCIONAL fur EN LA PATOFISIOLOGÍA DE ESCHERICHIA COLI O157:H7 Iannelli, Daniela Noemí

XF37_RS1 8805	hypotheticalprotein			Sí	Sí	1			4,04E-04	2,09
XF37_RS1 8960	Cell divisioninhibitor- SulA	sulAsfiA b0958 JW0941	cellular response to DNA damage stimulus	Sí	No	1	8,41E-03	1,51		
XF37_RS1 8985	Ribosomemodulation factor	rmf b0953 JW0936	negative regulation of trans- lation in response to stress	No	No	1	1,10E-02	-1,80		
XF37_RS1 9105	Outermembraneporin F	ompFcmlBcoa cry tolF b0929 JW0912	ion transmembranetransport	Sí	No	No	2,56E-02	-4,33	2,75E-02	-3,74
XF37_RS1 9110	Aspartateaminotrans- ferase	aspC b0928 JW0911	L-phenylalaninebiosynthe- ticprocess	No	No	No	9,95E-04	1,52	1,93E-03	1,69
XF37_RS1 9240	Pyruvate formate-ly- ase 1-activating en- zyme	pflAact b0902 JW0885	cellular response to DNA damage stimulus	No	No	No	4,13E-03	-1,70	2,15E-03	-1,92
XF37_RS1 9260	putative hydrolaseY- caC	ycaC b0897 JW0880		No	No	No			1,65E-02	1,54
XF37_RS1 9270	Anaerobicdimethylsu- lfoxidereductasechain B	dmsB b0895 JW0878	anaerobicelectrontrans- portchain	No	No	No	5,97E-03	-1,94	1,85E-03	-3,97
XF37_RS1 9275	Dimethylsulfoxidere- ductaseDmsA	dmsA b0894 JW5118	anaerobicelectrontrans- portchain	No	No	No	1,01E-02	-1,77	5,41E-03	-2,34
XF37_RS1 9305	Thioredoxinreductase	trxB b0888 JW0871	cell redox homeostasis	No	No	No	3,51E-06	1,77	1,88E-04	1,71
XF37_RS1 9355	Macrolide export ATP-binding/per- mease protein MacB	macBybjZ b0879 JW0863	response toantibiotic	No	No	No	1,80E-04	2,15	5,94E-05	2,18
XF37_RS1 9395	Pyruvatedehydroge- nase [ubiquinone]	poxB b0871 JW0855	pyruvatecatabolicprocess	No	No	No	3,06E-05	1,85	1,95E-02	1,64

Página 140de 162

ANÁLISIS DEL PAPEL DE LA BIODISPONIBILIDAD DE HIERRO Y DEL REGULADOR

TRANSCRIPCIONAL fur EN LA PATOFISIOLOGÍA DE ESCHERICHIA COLI O157:H7 Iannelli, Daniela Noemí

XF37_RS1 9500	Putrescine-bin- dingperiplasmicpro- tein	potF b0854 JW0838	putrescinetransport	No	No	No			1,19E-02	1,74
XF37_RS1 9515	Oxygen-insensitive NADPH nitroreduc- tase	nfsA mda18 mdaAybjB b0851 JW0835		No	No	No	1,00E-03	1,72	4,01E-03	1,59
XF37_RS1 9605	hypotheticalprotein			No	No	No	1,25E-02	-1,81	1,67E-02	-1,51
XF37_RS1 9675	putative proteinYbiU	ybiU b0821 JW0805		No	No	No	1,17E-04	1,89	8,88E-03	1,96
XF37_RS1 9725	DNA protection dur- ing starvation protein	dpspexBvtm b0812 JW0797	cellulariron ion homeostasis	Sí	No	No	6,39E-04	-4,36	6,94E-04	-3,88
XF37_RS1 9760	Catecholatesiderop- hore receptor Fiu	fiuybiL b0805 JW0790	iron ion homeostasis	Sí	No	No	1,23E-04	2,52	4,68E-03	2,82
XF37_RS1 9765	PKHD-typehydroxy- lase	ybiX b0804 JW5105	cellulariron ion homeostasis	No	No	No	3,82E-05	4,24	4,25E-04	6,14
XF37_RS1 9805	ATP-dependent RNA helicase RhlE	rhlE b0797 JW0781	response toheat	No	No	No		_	1,74E-02	-1,53
XF37_RS1 9865	Molybdopterinsyntha- secatalyticsubunit	moaE chlA5 b0785 JW0768	Mo-molybdopterin cofactor biosynthetic process	No	No	No	8,57E-03	2,26	5,42E-03	2,04
XF37_RS1 9870	Molybdopterin syn- thase sulfur carrier subunit	moaD chlA4 chlM b0784 JW0767	Mo-molybdopterin cofactor biosynthetic process	No	No	No	2,42E-03	2,39	7,10E-04	2,11
XF37_RS1 9875	Cyclicpyranopterin- monophosphatesynt- hase	moaC chlA3 b0783 JW0766	Mo-molybdopterin cofactor biosynthetic process	No	No	No	5,09E-04	2,95	2,26E-05	2,27

ANÁLISIS DEL PAPEL DE LA BIODISPONIBILIDAD DE HIERRO Y DEL REGULADOR

TRANSCRIPCIONAL fur EN LA PATOFISIOLOGÍA DE ESCHERICHIA COLI O157:H7 Iannelli, Daniela Noemí

XF37_RS1 9880	Molybdenumcofactor- biosynthesisprotein B	moaB chlA2 b0782 JW0765	Mo-molybdopterin cofactor biosynthetic process	No	No	No	5,38E-04	2,52	5,70E-04	2,54
XF37_RS1 9885	GTP 3' 8-cyclase	moaAbisAchlA chlA1 narA b0781 JW0764	Mo-molybdopterin cofactor biosynthetic process	No	No	No	2,47E-04	2,34	5,18E-03	1,87
XF37_RS2 0265	Molybdate-bin- dingproteinModA	modA b0763 JW0746	molybdate ion transport	No	No	No	1,56E-02	-1,58	1,76E-02	-1,63
XF37_RS2 0305	2 3-bisphosphoglyce- rate-dependent phosphoglycerate mu- tase	gpmAgpmpgmpgmA b0755 JW0738	gluconeogenesis	Sí	No	No		_	1,85E-04	2,18
XF37_RS2 0315	hypotheticalprotein	ybgS b0753 JW0736		No	No	No			1,77E-02	1,75
XF37_RS2 0365	Cell divisioncoordina- torCpoB	cpoBybgF b0742 JW0732	celldivision	No	No	No	5,25E-03	-1,52		
XF37_RS2 0405	Cytochromebd-Iubi- quinol oxidase subunit X	cydXybgT b4515 JW0724	aerobic electrontrans- portchain	No	No	No	3,90E-05	-2,34	5,48E-04	-1,92
XF37_RS2 0480	SuccinateCoA ligase [ADP-forming] subu- nit alpha	sucD b0729 JW0718	proteinautophosphorylation	No	No	No			2,32E-02	1,58
XF37_RS2 0485	SuccinateCoA ligase [ADP-forming] subu- nit beta	sucC b0728 JW0717	succinyl-CoAmetabolicpro- cess	No	No	No		-	4,47E-02	1,64
XF37_RS2 0495	2-oxoglutarate dehydrogenase E1 component	sucA b0726 JW0715	tricarboxylicacidcycle	No	No	No	3,95E-02	1,55		
XF37_RS2 0500	Succinate dehydroge- naseiron-sulfursubunit	sdhB b0724 JW0714	aerobic respiration	No	No	No	1,62E-02	-2,43	8,37E-03	-2,50

Página 142de 162

ANÁLISIS DEL PAPEL DE LA BIODISPONIBILIDAD DE HIERRO Y DEL REGULADOR

TRANSCRIPCIONAL fur EN LA PATOFISIOLOGÍA DE ESCHERICHIA COLI O157:H7 Iannelli, Daniela Noemí

XF37_RS2 0505	Succinatedehydroge- naseflavoprotein- subunit	sdhA b0723 JW0713	aerobic respiration	No	No	No			3,50E-02	-1,75
XF37_RS2 0575	GTP cyclohydrolase 1 type 2	ybgI b0710 JW0700	DNA repair	No	No	No			9,85E-05	1,52
XF37_RS2 0620	hypotheticalprotein	ybfA b0699 JW0688	response toradiation	No	No	No	8,16E-03	-2,11	4,37E-03	-1,67
XF37_RS2 0700	Ferricuptakeregula- tionprotein	fur b0683 JW0669	negative regulation of DNA-templated transcrip- tion	Sí	No	No			5,42E-03	-3,25
XF37_RS2 0790	tRNA-2-methylthio- N(6)-dimethylal- lyladenosine synthase	miaByleA b0661 JW0658	tRNAmethylation	No	No	No	3,44E-03	-1,53	2,41E-04	-1,71
XF37_RS2 0830	Glutamine transport ATP-binding protein GlnQ	gltL b0652 JW0647	L-aspartate import across plasma membrane	Sí	No	No			2,83E-05	-2,18
XF37_RS2 0885	LPS-assemblylipopro- teinLptE	lptErlpB b0641 JW0636	Gram-negative-bacterium- type cell outer membrane assembly	No	No	No	3,95E-02	-1,60		
XF37_RS2 0955	Sec-independent pro- tein translocase pro- tein TatE	tatEybeC b0627 JW0622	protein transport by the Tat complex	No	No	No	1,72E-02	-1,53	4,14E-03	-1,63
XF37_RS2 0970	Cold shock-like pro- tein CspE	cspEgicAmsmC b0623 JW0618	negative regulation of ter- mination of DNA-templated transcription	No	No	No	4,15E-03	1,77		
XF37_RS2 1045	Universal stress pro- tein UP12	uspGybdQyzzU b0607 JW0600	proteinadenylylation	No	No	No	7,91E-03	-1,72		

ANÁLISIS DEL PAPEL DE LA BIODISPONIBILIDAD DE HIERRO Y DEL REGULADOR

TRANSCRIPCIONAL fur EN LA PATOFISIOLOGÍA DE ESCHERICHIA COLI O157:H7 Iannelli, Daniela Noemí

XF37_RS2 1105	2 3-dihydro-2 3- dihydroxybenzoate dehydrogenase	entA b0596 JW0588	enterobactinbiosynthe- ticprocess	No	No	No	3,10E-04	4,85	2,44E-06	5,64
XF37_RS2 1110	Enterobactinsyntha- secomponent B	entBentG b0595 JW0587	enterobactinbiosynthe- ticprocess	No	No	No	2,29E-04	6,12	2,97E-04	7,30
XF37_RS2 1115	Enterobactinsyntha- secomponent E	entE b0594 JW0586	enterobactinbiosynthe- ticprocess	No	No	No	1,11E-03	2,41	2,33E-03	2,94
XF37_RS2 1120	Isochorismatesyntha- seEntC	entC b0593 JW0585	enterobactinbiosynthe- ticprocess	No	No	No	1,67E-06	3,29	4,26E-06	3,58
XF37_RS2 1125	Ferrienterobactin-bin- dingperiplasmicpro- tein	fepB b0592 JW0584	cellular response to DNA damage stimulus	Sí	No	No	9,17E-03	2,34	3,52E-05	4,04
XF37_RS2 1130	Enterobactinexporte- rEntS	entSybdA b0591 JW0583	cellular response to DNA damage stimulus	No	No	No			1,24E-03	1,88
XF37_RS2 1145	Ferric enterobactin transport ATP-binding protein FepC	fepC b0588 JW0580	ferric-enterobactin import into cell	No	No	No	8,59E-04	1,65	2,02E-03	1,84
XF37_RS2 1155	Enterobactinsyntha- secomponent F	entF b0586 JW0578	amino acid activation for nonribosomal peptide bio- synthetic process	No	No	No	7,43E-03	2,70	2,71E-03	3,47
XF37_RS2 1160	Enterobactinbiosynt- hesisproteinYbdZ	ybdZ b4511 JW0577	enterobactinbiosynthe- ticprocess	No	No	No	5,66E-03	4,99	8,67E-03	6,02
XF37_RS2 1165	Enterochelin esterase	fes b0585 JW0576	enterobactincatabolicpro- cess	No	No	No	1,35E-05	2,79	7,64E-04	3,22
XF37_RS2 1170	Ferrienterobactin re- ceptor	fepAfepfeuB b0584 JW5086	colicintransport	Sí	No	No	1,82E-04	2,22	4,09E-02	3,09
ANÁLISIS DEL PAPEL DE LA BIODISPONIBILIDAD DE HIERRO Y DEL REGULADOR

TRANSCRIPCIONAL fur EN LA PATOFISIOLOGÍA DE ESCHERICHIA COLI O157:H7 Iannelli, Daniela Noemí

XF37_RS2 1175	Enterobactinsyntha- secomponent D	entD b0583 JW5085	enterobactinbiosynthe- ticprocess	No	No	No	2,17E-03	1,68	1,22E-02	1,96
XF37_RS2 1625	Inosine-guanosineki- nase	gsk b0477 JW0466	GMP salvage	No	No	No			8,72E-04	-1,77
XF37_RS2 1635	Ferrochelatase	hemHpopAvisA b0475 JW0464	heme biosyntheticprocess	No	No	No			9,88E-03	1,52
XF37_RS2 1680	hypotheticalprotein	ybaM b0466 JW0455	cellular response to cell en- velope stress	No	No	No	1,78E-02	-1,51		
XF37_RS2 1700	Multidrug efflux pump subunit AcrB	acrBacrE b0462 JW0451	xenobiotic detoxification by transmembrane export across the cell outer mem- brane	No	No	No			3,25E-02	2,47
XF37_RS2 1760	Nitrogen regulatory protein P-II 2	glnKybaI b0450 JW0440	regulationofnitrogenutiliza- tion	No	No	No			2,11E-02	1,80
XF37_RS2 1830	Trigger factor	tig b0436 JW0426	'de novo' cotranslatio- nalproteinfolding	No	No	No			1,13E-02	-1,53
XF37_RS2 1915	1-deoxyxylulose-5- phosphate syntha- seYajO	yajO b0419 JW0409	thiaminemetabolicprocess	No	No	No			1,30E-03	1,51
XF37_RS2 1995	QueuinetRNA-ri- bosyltransferase	tgt b0406 JW0396	queuosinebiosyntheticpro- cess	No	No	No	7,59E-03	2,00		
XF37_RS2 2080	hypotheticalprotein	aroM b0390 JW0381		No	No	No	1,39E-02	-1,64	1,96E-02	-1,68
XF37_RS2 2085	putative proteinYaiA	yaiA b0389 JW0380		No	No	No			7,88E-03	1,51
XF37_RS2 2170	Delta-aminolevulini- caciddehydratase	hemBncf b0369 JW0361	heme biosyntheticprocess	Sí	No	No	2,12E-04	1,71	1,31E-04	1,66

Página 145de 162

ANÁLISIS DEL PAPEL DE LA BIODISPONIBILIDAD DE HIERRO Y DEL REGULADOR

TRANSCRIPCIONAL fur EN LA PATOFISIOLOGÍA DE ESCHERICHIA COLI O157:H7 Iannelli, Daniela Noemí

XF37_RS2 2240	hypotheticalprotein	yaiL b0354 JW0345		No	No	No	1,17E-02	-1,56		
XF37_RS2 2300	Beta-galactosidase	lacZ b0344 JW0335	lactosecatabolicprocess	No	No	No	8,61E-03	-1,74		
XF37_RS2 2370	hypotheticalprotein	yahO b0329 JW0321	response toradiation	No	No	2 & 3			5,63E-04	1,73
XF37_RS2 2390	Aldehydereducta- seYahK	yahK b0325 JW0317		No	No	No	1,17E-03	1,61	2,06E-04	1,56
XF37_RS2 2485	NAD/NADP-depend- ent betaine aldehyde dehydrogenase	betB b0312 JW0304	glycine betaine biosynthetic process from choline	No	No	1 & 4	2,77E-06	1,79	7,63E-03	1,60
XF37_RS2 2530	Lactateutilizationpro- tein C	ykgG b0308 JW5042		No	No	1 & 4	1,82E-02	-1,63	1,94E-02	-1,55
XF37_RS2 2535	Lactateutilizationpro- tein B	ykgF b0307 JW0300	lactateoxidation	No	No	1 & 4	1,33E-02	-2,16	1,46E-02	-1,99
XF37_RS2 2765	hypotheticalprotein			No	No	1 & 4			1,69E-03	1,70
XF37_RS2 2915	Sigma factor-binding protein Crl	crl b0240 JW0230	positive regulation of DNA- templated transcription	No	No	No	8,85E-03	1,85	5,88E-03	1,82
XF37_RS2 2995	hypotheticalprotein	yafK b0224 JW0214	cellwallorganization	No	No	No			2,98E-02	-1,70
XF37_RS2 3425	Methionineaminopep- tidase	map b0168 JW0163	proteininitiatormethionine- removal	Sí	No	No	3,38E-03	1,65	4,58E-04	1,51
XF37_RS2 3450	Periplasmicserineen- doproteaseDegP	degPhtrAptd b0161 JW0157	chaperone-mediatedprotein- folding	No	No	No			4,56E-02	1,61
XF37_RS2 3495	Glutamate-1-semial-	hemLgsapopC b0154 JW0150	protoporphyrinogen IX biosyntheticprocess	No	No	No	8,85E-04	1,72	5,41E-03	1,62

Página 146de 162

ANÁLISIS DEL PAPEL DE LA BIODISPONIBILIDAD DE HIERRO Y DEL REGULADOR

TRANSCRIPCIONAL fur EN LA PATOFISIOLOGÍA DE ESCHERICHIA COLI O157:H7 Iannelli, Daniela Noemí

	dehyde 2 1-aminomu- tase									
XF37_RS2 3635	Carbonicanhydrase 2	can cynT2 yadF b0126 JW0122	carbonutilization	No	No	No	1,08E-03	2,87	2,00E-04	2,41
XF37_RS2 3685	Dihydrolipoyl- dehydrogenase	lpdAlpd b0116 JW0112	2-oxoglutarate metaboli- cprocess	No	No	No	3,33E-03	1,85		
XF37_RS2 3690	Dihydrolipoyllysine- residue acetyltransfer- ase component of py- ruvate dehydrogenase complex	aceF b0115 JW0111	acetyl-CoA biosynthetic process from pyruvate	No	No	No	7,49E-04	1,93		
XF37_RS2 3695	Pyruvatedehydroge- nase E1 component	aceE b0114 JW0110	glycolyticprocess	No	No	No	9,63E-03	2,07		
XF37_RS2 3740	GMP reductase	guaC b0104 JW0101	IMP salvage	No	No	No	3,99E-05	1,81	4,22E-04	1,60
XF37_RS2 3895	3-isopropylmalate dehydrogenase	leuB b0073 JW5807	cellular response to amino acid starvation	No	No	No	9,43E-04	-1,76	1,16E-03	-1,95
XF37_RS2 3900	3-isopropylmalate dehydrataselar- gesubunit	leuC b0072 JW0071	leucinebiosyntheticprocess	No	No	No	4,09E-03	-4,00	3,04E-03	-3,89
XF37_RS2 3905	3-isopropylmalate dehydratasesmallsu- bunit	leuD b0071 JW0070	leucinebiosyntheticprocess	No	No	No	9,87E-04	-2,60	1,36E-03	-2,39
XF37_RS2 3915	HTH-type transcrip- tional regulator SgrR	sgrRyabN b0069 JW0068	negative regulation of DNA-templated transcrip- tion	No	No	No	1,60E-02	-1,52		
XF37_RS2 4235	Transaldolase B	talByaaK b0008 JW0007	carbohydratemetabolicpro- cess	No	No	No	5,62E-03	1,55	5,47E-04	1,73

Página 147de 162

ANÁLISIS DEL PAPEL DE LA BIODISPONIBILIDAD DE HIERRO Y DEL REGULADOR

TRANSCRIPCIONAL fur EN LA PATOFISIOLOGÍA DE ESCHERICHIA COLI O157:H7 Iannelli, Daniela Noemí

XF37_RS2 4380	Phosphopentomutase	deoBdrmthyR b4383 JW4346	5-phosphoribose 1-diphosphate biosyntheticprocess	No	No	No	9,90E-03	1,88	4,71E-05	1,86
XF37_RS2 4395	putative proteinYjjI	yjjIyjjH b4380 JW4343	anaerobicrespiration	No	No	No	2,11E-02	-1,53		
XF37_RS2 4410	hypotheticalprotein	yjjU b4377 JW4340	cellular response to DNA damage stimulus	No	No	No	6,10E-04	1,65	1,72E-04	1,65
XF37_RS2 4420	Osmotically-inducible protein Y	osmY b4376 JW4338	chaperone-mediatedprotein- folding	No	No	No	1,41E-02	2,14	6,25E-04	2,16
XF37_RS2 4430	Pyrimidine 5'-nucleo- tidase YjjG	yjjG b4374 JW4336	response toxenobioticstimu- lus	No	No	No	3,10E-04	1,66	3,03E-04	1,52
XF37_RS2 4460	Ferricironreductasep- roteinFhuF	fhuFyjjS b4367 JW4331	reductive ironassimilation	Sí	No	No	7,68E-06	1,91	7,89E-06	1,96
XF37_RS2 4520	Methyl-accepting chemotaxis protein I	tsrcheD b4355 JW4318	cellmotility	No	No	No	1,80E-02	-2,08	1,53E-02	-2,43
XF37_RS2 4695	Mannonatedehydra- tase	uxuA b4322 JW4285	cellular response to DNA damage stimulus	No	No	No	1,54E-04	-1,57		
XF37_RS2 4805	hypotheticalprotein			No	No	1	9,07E-03	-1,78	5,41E-03	-1,66
XF37_RS2 4855	hypotheticalprotein			No	No	1	9,28E-05	-1,84		
XF37_RS2 4885	Aldehydereducta- seAhr	ahryjgB b4269 JW5761	fattyacidmetabolicprocess	No	No	1	2,81E-03	1,88	4,05E-04	1,56
XF37_RS2 5010	Trehalose-6-phosp- hate hydrolase	treColgH b4239 JW4198	cellular response to DNA damage stimulus	No	No	No	2,11E-02	-2,14		
XF37_RS2 5015	Anaerobicribonucleo- side-triphosphatere- ductase	nrdD b4238 JW4197	2'-deoxyribonucleotide biosyntheticprocess	No	No	No	5,83E-03	2,00		

Página 148de 162

ANÁLISIS DEL PAPEL DE LA BIODISPONIBILIDAD DE HIERRO Y DEL REGULADOR

TRANSCRIPCIONAL fur EN LA PATOFISIOLOGÍA DE ESCHERICHIA COLI O157:H7 Iannelli, Daniela Noemí

									_	
XF37_RS2 5025	Soluble cytochrome b562			No	No	No	5,81E-04	-2,39	1,93E-03	-3,03
XF37_RS2 5045	Fructose-1 6- bisphosphatase class 1	fbpfdp b4232 JW4191	fructose 1,6-bisphosphate metabolicprocess	No	No	No	2,10E-05	1,91	2,59E-03	1,64
XF37_RS2 5150	Iron-sulfur cluster re- pair protein YtfE	ytfE b4209 JW4167	iron incorporation into metallo-sulfur cluster	No	No	No	1,50E-03	3,96	1,35E-05	3,17
XF37_RS2 5210	30S ribosomal protein S6	rpsF b4200 JW4158	cytoplasmictranslation	No	No	No			1,50E-02	-1,55
XF37_RS2 5435	Fumaratereducta- seflavoproteinsubunit	frdA b4154 JW4115	anaerobicrespiration	No	No	No	1,04E-02	-1,78	7,59E-03	-2,42
XF37_RS2 5440	Fumaratereductasei- ron-sulfursubunit	frdB b4153 JW4114	anaerobicrespiration	No	No	No	8,24E-03	-1,58	2,82E-03	-2,33
XF37_RS2 5530	Divalent-cation tole- ranceproteinCutA	cutA cutA1 cycY b4137 JW4097	response tocopper ion	No	No	No	1,52E-03	1,59	1,61E-03	1,70
XF37_RS2 5540	hypotheticalprotein	yjdC cutA3 b4135 JW5733	regulation of DNA-tem- plated transcription	No	No	No	4,52E-03	1,85	6,06E-03	1,77
XF37_RS2 5585	putative proteinYjdJ	yjdJ b4127 JW4088		No	No	No	1,31E-04	2,63	2,23E-02	2,01
XF37_RS2 5610	Fumarate hydratase class I anaerobic	fumB b4122 JW4083	cellular response to DNA damage stimulus	No	No	No		_	3,74E-03	-1,77
XF37_RS2 5690	hypotheticalprotein	yjdNphnB b4107 JW4068		No	No	No			6,22E-04	1,62
XF37_RS2 5870	putative ferredoxin- like protein YdhX	nrfCyjcJ b4072 JW4033		No	No	No	7,82E-03	-3,08	5,85E-03	-3,26
XF37_RS2 5880	Cytochrome c-552	nrfA b4070 JW4031	anaerobicelectrontrans- portchain	No	No	No	2,71E-03	-2,29	2,94E-03	-2,63

Página 149de 162

ANÁLISIS DEL PAPEL DE LA BIODISPONIBILIDAD DE HIERRO Y DEL REGULADOR

TRANSCRIPCIONAL fur EN LA PATOFISIOLOGÍA DE ESCHERICHIA COLI O157:H7 Iannelli, Daniela Noemí

XF37_RS2 5980	Quinoneoxidoreduc- tase 1	qorAhczqor qor1 b4051 JW4011		No	Sí	No	3,87E-03	1,51	7,57E-03	1,70
XF37_RS2 6105	hypotheticalprotein	yjbJ b4045 JW4005		No	No	No			7,28E-03	2,29
XF37_RS2 6135	Chorismatepyruvate- lyase	ubiC b4039 JW5713	pyruvatebiosyntheticpro- cess	No	No	No	6,98E-03	1,60	1,47E-03	1,54
XF37_RS2 6145	hypotheticalprotein	malMmolA b4037 JW3997	carbohydratetransport	No	No	No	7,64E-04	-3,29		
XF37_RS2 6155	Maltose/maltodextrin import ATP-binding protein MalK	malK b4035 JW3995	maltodextrintransmembra- netransport	No	No	No	2,25E-02	-2,28		
XF37_RS2 6160	Maltose/maltodextrin- binding periplasmic protein	malE b4034 JW3994	carbohydratetransport	No	No	No	3,97E-03	-3,49		
XF37_RS2 6340	Bifunctional purine biosynthesis protein PurH	purH b4006 JW3970	'de novo' IMP biosyntheti- cprocess	Sí	No	No	6,80E-04	2,40	5,58E-05	2,67
XF37_RS2 6345	Phosphoribosylamine- -glycine ligase	purD b4005 JW3969	'de novo' IMP biosyntheti- cprocess	No	No	No	2,71E-03	1,86	1,06E-03	2,16
XF37_RS2 6380	Endonuclease V	nfiyjaF b3998 JW5547	DNA repair	No	No	No			1,29E-04	1,57
XF37_RS2 6385	Uroporphyrinogende- carboxylase	hemE b3997 JW3961	heme B biosyntheticprocess	No	No	No			1,01E-03	1,99
XF37_RS2 6395	Regulatorof sigma D	rsd b3995 JW3959	negative regulation of DNA-templated transcrip- tion	No	No	No			2,10E-02	2,28
XF37_RS2	50S ribosomalprotein	rplL b3986 JW3949	cytoplasmictranslation	No	No	No	1,85E-02	-1,82	1,58E-02	-1,69

Página 150de 162

ANÁLISIS DEL PAPEL DE LA BIODISPONIBILIDAD DE HIERRO Y DEL REGULADOR

TRANSCRIPCIONAL fur EN LA PATOFISIOLOGÍA DE ESCHERICHIA COLI O157:H7 Iannelli, Daniela Noemí

6445	L7/L12								
XF37_RS2 6595	Acetylornithinedea- cetylase	argE b3957 JW3929	argininebiosyntheticprocess	No	No	No	1,23E-03	1,81	
XF37_RS2 6665	Catalase-peroxidase	katG b3942 JW3914	cellular response tohydro- genperoxide	No	No	No	2,43E-02	-1,56	
XF37_RS2 6685	Metrepressor	metJ b3938 JW3909	methioninebiosyntheticpro- cess	Sí	No	No	1,86E-02	-1,59	_
XF37_RS2 6780	Flavodoxin/ferredo- xinNADP reductase	fprmvrA b3924 JW3895	iron-sulfurclusterassembly	No	No	No	5,25E-04	3,95	
XF37_RS2 6805	Triosephosphateiso- merase	tpiAtpi b3919 JW3890	gluconeogenesis	No	No	No	4,82E-04	1,86	
XF37_RS2 6830	Periplasmicprotei- nCpxP	cpxPyiiO b4484 JW5558		No	No	No	3,46E-04	-1,57	_
XF37_RS2 6855	Superoxidedismutase [Mn]	sodA b3908 JW3879	cellular response to sele- nium ion	No	No	No	6,05E-03	2,57	
XF37_RS2 6930	Formate dehydroge- nase-O major subunit	fdoG b3894 JW3865	anaerobicelectrontrans- portchain	No	No	No	2,83E-02	-3,36	
XF37_RS2 6935	Formatedehydroge- nase-O iron-sulfur- subunit	fdoH b3893 JW3864	anaerobicelectrontrans- portchain	No	No	No	5,75E-04	-4,55	
XF37_RS2 6940	Formatedehydroge- nasecytochrome b556(fdo) subunit	fdoI b3892 JW3863	anaerobicelectrontrans- portchain	No	No	No	4,28E-02	-2,93	
XF37_RS2 7135	Molybdenum cofactor guanylyltransferase	mobAchlB mob narB b3857 JW3829	bis(molybdopterin guanine dinucleotide)molybdenum biosynthetic process	No	No	No	1,62E-04	1,64	-
XF37_RS2	Xaa-Pro dipeptidase	pepQ b3847 JW3823	peptidecatabolicprocess	No	No	No	1,93E-04	1,60	

Página 151de 162

ANÁLISIS DEL PAPEL DE LA BIODISPONIBILIDAD DE HIERRO Y DEL REGULADOR

TRANSCRIPCIONAL fur EN LA PATOFISIOLOGÍA DE ESCHERICHIA COLI O157:H7 Iannelli, Daniela Noemí

7185									
XF37_RS2 7190	Fatty acid oxidation complex subunit alpha	fadBoldB b3846 JW3822	fattyacid beta-oxidation	No	No	No	1,91E-02	1,50	
XF37_RS2 7265	5-methyltetrahydrop- teroyltriglutamate homocysteinemethyl- transferase	metE b3829 JW3805	homocysteinemetabolicpro- cess	No	No	No	3,34E-05	1,71	
XF37_RS2 7560	Peptidyl-prolyl cis- trans isomerase C	ppiCparVA b3775 JW3748		No	No	No	2,08E-02	1,96	
XF37_RS2 7565	Ketol-acidreductoiso- merase (NADP(+))	ilvC b3774 JW3747	isoleucinebiosyntheticpro- cess	No	No	No	3,75E-06	1,60	
XF37_RS2 7670	Ribokinase	rbsK b3752 JW3731	D-ribosecatabolicprocess	No	No	No	8,28E-04	-1,61	
XF37_RS2 7675	Ribose import binding protein RbsB	rbsBprlBrbsP b3751 JW3730	D-ribosetransmembrane- transport	No	No	No	6,15E-03	-1,53	
XF37_RS2 7685	Ribose import ATP- binding protein RbsA	rbsA b3749 JW3728	D-ribosetransmembrane- transport	No	No	No	1,62E-04	-1,56	
XF37_RS2 7710	Aspartateammonia ligase	asnA b3744 JW3722	asparaginebiosyntheticpro- cess	No	No	No	4,28E-04	1,82	
XF37_RS2 7720	ProteinMioC	mioCyieB b3742 JW3720	regulationofcelldivision	No	No	No	3,44E-03	1,75	

BIBLIOGRAFÍA

- Bustin, S., Benes, V., Garson, J., Hellemans, J., Huggett, J., Kubista, M., ... Wittwer, C. (2009). The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin Chem, 55(4):611-22. doi:10.1373/clinchem.2008.112797
- Dudek, C.-A., & Jahn, D. (2022). PRODORIC: state-of-the-art database of prokaryotic gene regulation. Nucleic Acid Res., 50(D1):D295-D302. doi:10.1093/nar/gkab1110
- Abe, H., Tatsuno, I., Tobe, T., Okutani, A., & Sasakawa, C. (2002). Bicarbonate Ion Stimulates Expression of Locus of Enterocyte Effacement-Encoded Genes in the Enterohemorrhagic Escherichia coli O157:H7. Infection and Inunity, 70(7): 3500-3509. doi:10.1128/IAI.70.7.3500-3509.2002
- Amigo N, Z. Q. (2016). Overexpressed Proteins in Hypervirulent Clade 8 and Clade 6 Strains of Escherichia coli O157:H7 Compared to E. coli O157:H7 EDL933 Clade 3 Strain. PLoS One, 11(11).
- Andreozzi, E., & Uhlich, G. (2020). PchE Regulation of Escherichia coli O157:H7 Flagella, Controlling the Transition to Host Cell Attachment. International journal of molecular sciences, 21(13): 4592. doi:10.3390/ijms21134592
- Andrews, S. C., Robinson, A. K., & Rodríguez-Quiñones, F. (2003). Bacterial iron homeostasis. Microbiology reviews, 215-237.
- Arenas-Hernández, M., Rojas-López, M., Medrano-López, A., Nuñez-Reza, K., Puentes, J. L., Martinez-Laguna, Y., & Torres, A. (2014). Environmental regulation of the long polar fimbriae 2 of enterohemorrhagic Escherichia coli O157:H7. FEMS Microbiol Lett, 357(2): 105-114. doi:10.1111/1574-6968.12513
- Arndt, D., Grant, J. G., Marcu, A., Sajed, T., Pon, A., & Liang, Y. (2016). PHASTER: a better, faster version of the PHAST phage search tool. Nucleic Acid Research. doi:10.1093/nar/gkw387
- Arnold, C. N., McElhanon, J., Lee, A., Leonhart, R., & Siegele, D. A. (2001). Global Analysis of Escherichia coli Gene Expression during the Acetate-Induced Acid Tolerance

Response. Journal of Bacteriology, 183(7): 2178–2186. doi:10.1128/JB.183.7.2178-2186.2001

- Bansal, T., Englert, D., Lee, J., Hedge, M., Wood, T., & Jayaraman, A. (2007). Differential Effects of Epinephrine, Norepinephrine, and Indole on Escherichia coli O157:H7 Chemotaxis, Colonization, and Gene Expression. *Infection and Inmunity*, 75(9): 4597– 4607. doi:10.1128/IAI.00630-07
- Bardiau, M. (2010). Initial adherence of EPEC, EHEC and VTEC to host cells. *Vet Res*, 41(5): 57. doi:10.1051/vetres/2010029
- Bergan, J. (2012). Shiga Toxins. Toxicon, (6):1085-107. doi:10.1016/j.toxicon.2012.07.016
- Bradford, M. M. (1976). A Rapid and Sensitive Method for the Quantitation of Microgram Quantities of Protein Utilizing the Principle of Protein-Dye Binding. *Analytical Biochemestry*, 72, 248-254.
- Brunder, W., Schidt, H., & Karch, H. (1996). KatP, a novel catalase-peroxidase encoded by the large plasmid of enterohaemorrhagic Escherichia coli 01 57 : H7 . *Microbiology*.
- Brunder, W., Schmidt, H., & Karch, H. (1997). EspP, a novel extracellular serine protease ofenterohaemorrhagicEscherichia coliO157:H7 cleaveshuman coagulation factor V. *Molecular Microbiology*, 24(4), 767–77.
- Carver T, H. S. (2012). Artemis: an integrated platform for visualization and analysis of highthroughput sequence-based experimental data. *Bioinformatics (Oxford, England)*, 28;4;464-9. doi:10.1093/bioinformatics/btr703
- Castanie-Cornet, M.-P. (1999). Control of Acid Resistance in Escherichia coli. *J Bacteriol*, 181(11): 3525–3535. doi: 10.1128/jb.181.11.3525-3535.1999
- Chan, Y. S. (2016). Shiga toxins: from structure and mechanism to applications. *Appl Microbiol Biotechnol*, (4):1597-1610. doi:10.1007/s00253-015-7236-3
- Chen, L., Yang, J., Yu, J., Yao, Z., Sun, L., & Qi Jin, Y. (2005). VFDB: a reference database for bacterial virulence factors. *Nucleic Acid Research*. doi:10.1093/nar/gki008
- Clarke, M., Hughes, D., Zhu, C., Boedeker, E., & Sperandio, V. (2006). The QseC sensor kinase: A bacterial adrenergic receptor. *PNAS*, 103(27): 10420–10425. doi:10.1073/pnas.0604343103

- Conesa, A., Götz, S., García-Gómez, J., Terol, J., Talón, M., & Robles, M. (2005). Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. *Bioinformatics*, 21(18):3674-6. doi:10.1093/bioinformatics/bti610
- Connolly, J. P. (2015). From ingestion to colonization: the influence of the host environment on regulation of the LEE encoded type III secretion system in enterohaemorrhagic Escherichia coli. *Front Microbiol*, 6: 568. doi:10.3389/fmicb.2015.00568
- Croxen, M. A. (2010). Molecular mechanisms of Escherichia coli pathogenicity. *Nature Reviews Microbiology*, 8, pages26–38. doi:https://doi.org/10.1038/nrmicro2265
- Datsenko, K., & Wanner, B. (2000). One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. *Proc Natl Acad Sci U S A*, 97(12): 6640– 6645. doi:10.1073/pnas.120163297
- Dean-Nystrom, E. A. (1998). Escherichia coli O157:H7 Requires Intimin for Enteropathogenicity in Calves. *Infect Immun*, 66(9): 4560–4563. doi:10.1128/IAI.66.9.4560-4563.1998
- Doncheva, N. T., Morris, J. H., Gorodkin, J., & Jensen, L. J. (2019). Cytoscape StringApp: Network Analysis and Visualization of Proteomics Data. *Proteome research*, 18(2):623-632. doi:10.1021/acs.jproteome.8b00702
- Ferens, W. A. (2011). Escherichia coli O157:H7: animal reservoir and sources of human infection. *Foodborne Pathog Dis*, 8(4):465-87. doi:10.1089/fpd.2010.0673
- Fitzhenry, R. (2006). Long polar fimbriae and tissue tropism in Escherichia coli O157:H7.MicrobesandInfection,8(7),1741-1749.doi:https://doi.org/10.1016/j.micinf.2006.02.012
- Galperin, M., Makarova, K., Wolf , Y., & Koonin, E. (2015). Expanded microbial genome coverage and improved protein family annotation in the COG database. *Nucleic Acids Res.* doi:10.1093/nar/gku1223.
- Gaytán, M. O. (2016). Type Three Secretion System in Attaching and Effacing Pathogens. *Front Cell Infect Microbiol*, 6: 129. doi:10.3389/fcimb.2016.00129

- Giovacchini, C. (2021). *Bolentín integrado de vigilancia*. Argentina: Ministerio de salud. Retrieved from https://bancos.salud.gob.ar/sites/default/files/2021-09/biv_560_se_30_con_informe_SUH.pdf
- Götz S., G.-G. J. (2008). High-throughput functional annotation and data mining with the Blast2GO suite. *Nucleic Acid Research*, 3420–3435. doi:https://doi.org/10.1093/nar/gkn176
- Grass, G. (2006). Iron transport in Escherichia coli: All has not been said and done. *BioMetals*, 19:159–172. doi:10.1007/s10534-005-4341-2
- Gruber, C., & Sperandio, V. (2015). Global analysis of posttranscriptional regulation by GlmY and GlmZ in enterohemorrhagic Escherichia coli O157:H7. *Infect Inmun*, 83(4):1286-95. doi:10.1128/IAI.02918-14
- Ha, J., Wang, B., Fang, X., Means, W., McCormick, R., Gomelsky, M., & Zhu, M.-J. (2013). :c-di-GMP signaling regulates E. coli O157:H7 adhesion. *Veterinary microbiology*.
- Hayashi, T., Shinagawa, H., Kozo, M., Ohnishi, M., Kurokawa, K., Ishii, K., . . . Hattori, M. (2001). Complete Genome Sequence of Enterohemorrhagic Eschelichiacoli O157:H7 and Genomic Comparison with a Laboratory Strain K-12. DNA Research, 8, 11–22.
- Heimer, S. R., Welch, R. A., Perna, N. T., Pósfai, G., Evans, P. S., James, K. B., ... Mobley, H. L. (2002). Urease of Enterohemorrhagic Escherichia coli: Evidence for Regulation by Fur and a trans-Acting Factor. *Infect Immun*, 70(2): 1027–1031. doi:10.1128/iai.70.2.1027-1031.2002
- Herold, S., Siebert, J., Huber, A., & Schmidt, H. (2005). Global Expression of Prophage Genes in Escherichia coli O157:H7 Strain EDL933 in Response to Norfloxacin. *Antimicrob Agents Chemother*, 49(3): 931–944. doi:10.1128/AAC.49.3.931-944.2005
- House, B., Kus, J. V., Prayitno, N., Mair, R., Que, L., Chingcuanco, F., ... Foster, D. B. (2009). Acid-stress-induced changes in enterohaemorrhagic Escherichia coli O157:H7 virulence. *Microbiology Society*. doi:https://doi.org/10.1099/mic.0.025171-0
- Jia, T., Liu, B., Mu, H., Qian, C., Wang, L., Li, L., . . . Liu, B. (2021). A Novel Small RNA Promotes Motility and Virulence of Enterohemorrhagic Escherichia coli O157:H7 in Response to Ammonium. *mBio*, 12. doi:10.1128/mBio.03605-20

- Jiang, L., Yang, W., Jiang, X., Yao, T., Wang, L., & Yang, B. (2021). Virulence-related O islands in enterohemorrhagic Escherichia coli O157:H7. *Gut Microbes*, 13(1). doi:10.1080/19490976.2021.1992237
- Kaper, J. B. (1998). Diarrheagenic Escherichia coli. Clin Microbiol, (1): 142-201. doi:10.1128
- Katouli, M. (2010). Population structure of gut Escherichia coli and its role in development of extra-intestinal infections. *Iran J Microbiol*, 2(2):59-72. doi:22347551
- Kenny, B. (1997). Enteropathogenic Escherichia coli protein secretion is induced in response to conditions similar to those in the gastrointestinal tract. *Infet Immun*, 65(7): 2606– 2612. doi:10.1128/iai.65.7.2606-2612.1997
- Klopfenstein, D., Zhang, L., Pdersen, B., Ramírez, F., Warwick Vesztrocy, A., Naldi, A., ... Tang, H. (2018). GOATOOLS: A Python library for Gene Ontology Analyses. *Sci Rep.*
- Kurabayashi, K., Agata, T., Asano, H., Tomita, H., & Hirakawa, H. (2016). Fur Represses Adhesion to, Invasion of, and Intracellular Bacterial Community Formation within Bladder Epithelial Cells and Motility in Uropathogenic Escherichia coli. *Infection and Inmunity*, 84(11): 3220–3231. doi:10.1128/IAI.00369-16
- Laemmli. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. *Nature*, 227 (5259); 680-685.
- Lathem, W. W., Grys, T. E., Witowski, S. E., Torres, A. G., Kaper, J. B., Tarr, P. I., & Welch, R. A. (2002). StcE, a metalloprotease secreted by Escherichia coli O157:H7, specifically cleaves C1 esterase inhibitor. *Molecular microbiology*. doi:https://doi.org/10.1046/j.1365-2958.2002.02997.x
- Lau, C. K., Krewulak, K. D., & Vogel, H. J. (2016). Bacterial ferrous iron transport: the Feo system. *Microbiology Reviews*, 273–298. doi:https://doi.org/10.1093/femsre/fuv049
- Ledesma, M. A. (2010). The Hemorrhagic Coli Pilus (HCP) of Escherichia coli O157:H7 Is an Inducer of Proinflammatory Cytokine Secretion in Intestinal Epithelial Cells. *PLoS One*, 5(8): e12127. doi:10.1371/journal.pone.0012127
- Lee, S.-Y., & Kang, D.-H. (2015). Survival mechanism of Escherichia coli O157:H7 against combined treatment with acetic acid and sodium chloride. *Food microbiology*, 95-104. doi:https://doi.org/10.1016/j.fm.2015.10.021

- Lethem, W. W., Grys, T. E., Witowski, S. E., Torres, A. G., Kaper, J. B., Tarr, P. I., & Welch, R. A. (2002). StcE, a metalloprotease secreted by Escherichia coliO157:H7, specifically cleaves C1 esterase inhibitor. *Molecular Microbiology*, 45(2), 277–288.
- Lim, J. Y. (2010). A Brief Overview of Escherichia coli O157:H7 and Its Plasmid O157. J Microbiol Biotechnol, (1): 5–14.
- Lingwood, C. (1996). Role of verotoxin receptors in pathogenesis. *Trends Microbiol*, (4):147-53. doi:10.1016/0966-842x(96)10017-2
- Liu, Y., Han, R., Wang, J., Yang, P., Wang, F., & Yang, B. (2020). Magnesium Sensing Regulates Intestinal Colonization of Enterohemorrhagic Escherichia coli O157:H7. *mBio.* doi:10.1128/mBio.02470-20
- Lorenzo, d., Wee, S., Herrero, M., & Neilands, J. B. (1987). Operator sequences of the aerobactin operon of plasmid ColV-K30 binding the ferric uptake regulation (fur) repressor. *J Bacteriol*, 169(6): 2624–2630. doi:10.1128/jb.169.6.2624-2630.1987
- Marchesini, M. I., Herrmann, C. K., Gorvel, J.-P., & Comerci, D. J. (2011). In search of Brucella abortus type IV secretion substrates: screening and identification of four proteins translocated into host cells through VirB system. *Cellular Microbiology*, 13(8), 1261–1274. doi:10.1111/j.1462-5822.2011.01618.x
- McWilliams, B. D. (2014). EHEC Adhesins. *Microbiol Spectr*, 2 (2). doi:10.1128/microbiolspec.EHEC-0003-2013
- Nairz, M., & Günter, W. (2020). Iron in infection and immunity. *Molecular Aspects of Medicine*. doi:https://doi.org/10.1016/j.mam.2020.100864
- Naskar, S., Hohl, M., Tassinari, M., & Low, H. H. (2020). The structure and mechanism of the bacterial type II secretion system. *Microreview*, 412-424. doi:10.1111/mmi.14664
- Naylor, S. W. (2003). Lymphoid Follicle-Dense Mucosa at the Terminal Rectum Is the Principal Site of Colonization of Enterohemorrhagic Escherichia coli O157:H7 in the Bovine Host. *Infect Inmun*, 71(3): 1505–1512. doi:10.1128/IAI.71.3.1505-1512.2003
- Nguyen, Y. (2012). Enterohemorrhagic E. coli (EHEC) pathogenesis. *Front Cell Infect Microbiol*, 2 : 90. doi:10.3389/fcimb.2012.00090

UADE BIODISPON TRANSCRI

- Owen, J. A., Punt, J., & Stranford, S. A. (2014). Kuby Inmunología (Séptima ed.). McGraw Hill.
- Persad, A. K. (2014). Animal Reservoirs of Shiga Toxin-Producing Escherichia coli. *Microbiol Spectr*, 2(4). doi:10.1128/microbiolspec.EHEC-0027-2014
- Phillips, A. (2000). Enterohaemorrhagic Escherichia coli O157:H7 target Peyer's patches in humans and cause attaching/effacing lesions in both human and bovine intestine. *Gut*, 47(3): 377–381. doi:10.1136/gut.47.3.377
- Poirier, K., Faucher, S. P., Béland, M., Brousseau, R., Gannon, V., Martin, C., . . . Daigle, F. (2008). Escherichia coli O157:H7 Survives within Human Macrophages: Global Gene Expression Profile and Involvement of the Shiga Toxins. *Infection and Inmunity*, 76(11): 4814–4822. doi:10.1128/IAI.00446-08
- Poirier, K., Faucher, S., Béland, M., Brousseau, R., Gannon, V., Martin, C., . . . Daigle, F. (2008). Escherichia coli O157:H7 Survives within Human Macrophages: Global Gene Expression Profile and Involvement of the Shiga Toxins. *Infection and Immunity*, 76(11): 4814–4822. doi:10.1128/IAI.00446-08
- Porcheron, G. l. (2015). Interplay between iron homeostasis and virulence: Fur and RyhB as major regulators of bacterial pathogenicity. *Veterinary Microbiology*, 2-14.
- Ramakers, C., Ruijter, J., & Leka, R. (2003). Assumption-free analysis of quantitative real-time polymerase chain reaction (PCR) data. *Neurosci Lett*, 339(1):62-6. doi:10.1016/s0304-3940(02)01423-4
- Rashid, R., Tarr, P., & Moseley, S. L. (2006). Expression of the Escherichia coli IrgA homologue adhesin is regulated by the ferric uptake regulation protein. *Microb Pathog*, 41(6): 207–217. doi:10.1016/j.micpath.2006.07.006
- Rendón, M. A. (2007). Commensal and pathogenic Escherichia coli use a common pilus adherence factor for epithelial cell colonization. *Proc Natl Acad Sci U S A*, 104(25): 10637–10642. doi:10.1073/pnas.0704104104
- Rivas, M. (2008). Risk Factors for Sporadic Shiga Toxin–producing Escherichia coli Infections in Children, Argentina. *Emerg Infect Dis*, (5): 763–771. doi: 10.3201/eid1405.071050

- Rivero, M. A., Padola, N. L., Etcheverria, A. I., & Parma, A. E. (2004). ESCHERICHIA COLI ENTEROHEMORRAGICA Y SINDROME UREMICO HEMOLITICO EN ARGENTINA. *Medicina*, 2004;64(4):352-356.
- Roman L. Tatusov, M. Y. (2000). The COG database: a tool for genome-scale analysis of protein functions and evolution. *Nucleic Acid Research*, 28(1): 33–36. doi:10.1093/nar/28.1.33
- Runyen-Janecky, L. J. (2013). Role and regulation of heme iron acquisition in gram-negative pathogens. *Front Cell Infect Microbiol*, 3:55. doi:10.3389/fcimb.2013.00055
- Schmidt, H., Henkel, B., & Karch, H. (1997). A gene cluster closely related to type II secretion pathway operons of Gram-negative bacteria is located on the large plasmid of enterohemorragic Escherichia coli O157 strains. *FEMS Microbiology Letters*, 265-272.
- Schmidt, H., Karch, H., & Beautin, L. (1994). The large-sized plasmids of enterohemorrhagic
 Escherichia coli O157 strains encode hemolysins which are presumably members of the
 E. coli a-hemolysin family . *FEMSLE*.
- Sheldon, J. (2016). Iron Acquisition Strategies of Bacterial Pathogenes. *Microbiology Spectrum*, 4(2). doi:doi:10.1128/microbiolspec.VMBF-0010
- Sheldon, Jessica R.; Laakson, Holly A; Heinrichs, David E. (2016). Iron Acquisition Strategies of Bacterial Pathogenes. *Microbbiology Spectrum*, 4(2). doi:doi:10.1128/microbiolspec.VMBF-0010
- Slater, S. L. (2018). The Type III Secretion System. *Microbiol Immunol*, 416:51-72. doi:10.1007/82_2018_116.
- Soares, S. C., Geyik, H., Ramos, R. T., de Sá, P. H., Barbosa, E. G., Baumbach, J., . . . Azevedo, V. (2016). GIPSy: Genomic island prediction software. *Journal of Biotechnology*. doi:10.1016/j.jbiotec.2015.09.008
- Sudo, N., Soma, A., Muto, A., Iyoda, S., Suh, M., Kurihara, N., . . . Sekine, Y. (2014). A novel small regulatory RNA enhances cell motility in enterohemorrhagic Escherichia coli. *Microbiol*, 60, 44–50. doi:10.2323/jgam.60.44

- Sun, H., Wang, M., Liu, Y., Wu, P., Yao, T., Yang, W., . . . Yang, B. (2022). Regulation of flagellar motility and biosynthesis in enterohemorrhagic Escherichia coli O157:H7. *Gut microbes*, 14. doi:10.1080/19490976.2022.2110822
- Szklarczyk, D., Gable, A. L., Nastou, K. C., Lyon, D., Kirsch, R., Pyysalo, S., . . . Mering, C. v. (2021). The STRING database in 2021: customizable protein-protein networks, and functional characterization of user-uploaded gene/measurement sets. *Nucleic acid research*. doi:10.1093/nar/gkaa1074
- Tatsuno, I., Horie, M., Abe, H., Miki, T., Makino, K., Shinagawa, H., . . . Sasakawa, C. (2001).
 toxB Gene on pO157 of Enterohemorrhagic Escherichia coli O157:H7 Is Required for
 Full Epithelial Cell Adherence Phenotype. *Infection and Inmunity*, 69(11): 6660–6669.
 doi:10.1128/IAI.69.11.6660-6669.2001
- Tobe, T. (2006). An extensive repertoire of type III secretion effectors in Escherichia coli O157 and the role of lambdoid phages in their dissemination. *Proc Natl Acad Sci U S A.*, 103(40): 14941–14946. doi:10.1073/pnas.0604891103
- Tobe, T., Yen, H., Takahashi, H., Kagayama, Y., Ogasawara, N., & Oshima, T. (2014). Antisense Transcription Regulates the Expression of the Enterohemorrhagic Escherichia coli Virulence Regulatory Gene ler in Response to the Intracellular Iron Concentration. *PLoS One*, 9 (7). doi:10.1371/journal.pone.0101582
- Tuttle, J. (1999). Lessons from a large outbreak of Escherichia coli O157:H7 infections: insights into the infectious dose and method of widespread contamination of hamburger patties. *Epidemiol Infect*, 122(2):185-92. doi:10.1017/s0950268898001976
- van de Kar, N., Monnens, L., Karmali, M., & van Hinsbergh, V. (1992). Tumor necrosis factor and interleukin-1 induce expression of the verocytotoxin receptor globotriaosylceramide on human endothelial cells: implications for the pathogenesis of the hemolytic uremic syndrome. *Blood*.
- Wandersman, C., & Delepelaire, P. (2004). BACTERIAL IRON SOURCES: From Siderophores. *Microbiology*, 58:611–47. doi:10.1146/annurev.micro.58.030603.123811

- Weiss, S. M. (2009). IRSp53 Links the Enterohemorrhagic E. coli Effectors Tir and EspFU for Actin Pedestal Formation. *Cell Host & Microbe*, 5(3), 244-258. doi:https://doi.org/10.1016/j.chom.2009.02.003
- Xue, Y., Zhang, H., Wang, H., Hu, J., Du, M., & Zhu, M.-J. (2014). Host inflammatory response inhibits Escherichia coli O157:H7 adhesion to gut epithelium through augmentation of mucin expression. *Infection and inmunity*, 82(5):1921-30. doi:10.1128/IAI.01589-13
- Yang, B., Feng, L., Wang, F., & Wang, L. (2015). Enterohemorrhagic Escherichia coli senses low biotin status in the large intestine for colonization and infection. *Nature Communications*, 6: 6592. doi:10.1038/ncomms7592
- Zumbrun, S., Hanson, L., Sinclair, J., Freedy, J., Melton-Celsa, A., Rodriguez-Canales, J., . . .
 O'Brien, A. (2010). Human Intestinal Tissue and Cultured Colonic Cells Contain Globotriaosylceramide Synthase mRNA and the Alternate Shiga Toxin Receptor Globotetraosylceramide. *Infect. Inmmun.*, 78, 4488-4499. doi:10.1128/IAI.00620-10