Mostrar el registro sencillo del ítem
dc.creator | Negri, Pablo | |
dc.date.accessioned | 2018-10-12T19:05:16Z | |
dc.date.available | 2018-10-12T19:05:16Z | |
dc.date.issued | 2018 | |
dc.identifier.uri | http://hdl.handle.net/123456789/7577 | |
dc.description | Disponible en: https://arxiv.org/abs/1802.03327 | es |
dc.description.abstract | Address Event Representation is a thriving technology that can change the digital image processing paradigm. This paper proposes a methodology to characterize the shape of objects using the streaming of asynchronous events. A new descriptor that enhances spikes connectivity is associated with two oriented histogram based representations. This paper uses those features to develop both a non-supervised and supervised multi-classification framework to recognize poker signs from the Poker-DVS public dataset. | es |
dc.format.extent | 2 p. | es |
dc.title | Shapes characterization on event address representation using histograms of oriented events and an extended LBP approach | es |
uade.subject.descriptor | Reconocimiento de Patrones | es |
uade.subject.descriptor | Sensores de Visión Dinámica | es |
uade.proyecto.codigo | P16T01 | es |
uade.proyecto.nombre | Segmentación de información visual a partir de cámaras retinianas: Aplicación a Robótica Móvil - Visita al Instituto de Microelectrónica de la Universidad de Sevilla | es |
uade.area | Alimentos / Biotecnología / Bioinformática | es |
uade.proyecto.responsable | Negri, Pablo | |
uade.instituto | Instituto de Tecnología | es |