Mostrar el registro sencillo del ítem

dc.creator Edfeldt, K.
dc.creator Edwards, A. M.
dc.creator Engkvist, O.
dc.creator Günther, J.
dc.creator Hartley, M.
dc.creator Hulcoop, D. G.
dc.creator Leach, A. R.
dc.creator Marsden, B. D.
dc.creator Menge, A.
dc.date.accessioned 2025-02-13T18:15:07Z
dc.date.available 2025-02-13T18:15:07Z
dc.date.issued 2024
dc.identifier.uri http://hdl.handle.net/123456789/15531
dc.description.abstract The Structural Genomics Consortiumis an international open science research organization with a focus on accelerating early-stage drug discovery, namely hit discovery and optimization. We, as many others, believe that artificial intelligence (AI) is poised to be a main accelerator in the field. The question is then how to best benefit from recent advances in AI and how to generate, format and disseminate data to enable future breakthroughs in AI-guided drug discovery. We present here the recommendations of a working group composed of experts from both the public and private sectors. Robust data management requires precise ontologies and standardized vocabulary while a centralized database architecture across laboratories facilitates data integration into high-value datasets. Lab automation and opening electronic lab notebooks to data mining push the boundaries of data sharing and data modeling. Important considerations for building robust machine-learning models include transparent and reproducible data processing, choosing the most relevant data representation, defining the right training and test sets, and estimating prediction uncertainty. Beyond data-sharing, cloud-based computing can be harnessed to build and disseminate machine-learning models. Important vectors of acceleration for hit and chemical probe discovery will be (1) the real-time integration of experimental data generation and modeling workflows within design-make-test-analyze (DMTA) cycles openly, and at scale and (2) the adoption of a mindset where data scientists and experimentalists work as a unified team, and where data science is incorporated into the experimental design. es
dc.format.extent 10 p. es
dc.relation.ispartof Nature Communications 15:5640 es
dc.rights Acceso Abierto es
dc.title A data science roadmap for open science organizations engaged in early-stage drug discovery es
dc.type Revista es
uade.subject.keyword Inteligencia Artificial es
uade.subject.descriptor Industria Farmacéutica es
uade.subject.descriptor Ciencia de Datos es
academic.materia.codigo 3.2.186 es
academic.materia.nombre Seminario de Bioinformática es
dc.rights.license Acceso Abierto es


Accesos

Este ítem aparece en la(s) siguiente(s) colección(ones)

 

Mostrar el registro sencillo del ítem

 
 

Lima 775 - C1073AAO
Ciudad Autónoma de Buenos Aires

 

Sede Recoleta: Libertad 1340 - C1016ABB
Ciudad Autónoma de Buenos Aires

 

Campus Costa Argentina: Av. Intermédanos Sur 776
Pinamar, Provincia de Buenos Aires

 
 
 

Carreras acreditadas nacional e internacionalmente