Mostrar el registro sencillo del ítem

dc.creator Wu, WenTao
dc.creator Li, Yuan-Jie
dc.creator Feng, Ao-Zi
dc.creator Li, Li
dc.creator Huang, Tao
dc.creator Xu, An-Ding
dc.creator Lyu, Jun
dc.date.accessioned 2025-02-13T17:32:25Z
dc.date.available 2025-02-13T17:32:25Z
dc.date.issued 2021
dc.identifier.uri http://hdl.handle.net/123456789/15530
dc.description.abstract Many high quality studies have emerged from public databases, such as Surveillance, Epidemiology, and End Results (SEER), National Health and Nutrition Examination Survey (NHANES), The Cancer Genome Atlas (TCGA), and Medical Information Mart for Intensive Care (MIMIC); however, these data are often characterized by a high degree of dimensional heterogeneity, timeliness, scarcity, irregularity, and other characteristics, resulting in the value of these data not being fully utilized. Data-mining technology has been a frontier field in medical research, as it demonstrates excellent performance in evaluating patient risks and assisting clinical decision-making in building disease-prediction models. Therefore, data mining has unique advantages in clinical big-data research, especially in large-scale medical public databases. This article introduced the main medical public database and described the steps, tasks, and models of data mining in simple language. Additionally, we described data-mining methods along with their practical applications. The goal of this work was to aid clinical researchers in gaining a clear and intuitive understanding of the application of data-mining technology on clinical big-data in order to promote the production of research results that are beneficial to doctors and patients. es
dc.format.extent 12 p. es
dc.relation.ispartof Military Medical Research volume 8, es
dc.rights Acceso Abierto es
dc.title Data mining in clinical big data: the frequently used databases, steps, and methodological models es
dc.type ArtRev es
uade.subject.keyword Minería de Datos es
uade.subject.keyword Clinical Big Data es
uade.subject.descriptor Salud Pública es
uade.subject.descriptor Análisis de Datos es
academic.materia.codigo 3.2.186 es
academic.materia.nombre Seminarios de Bioinformática es
dc.rights.license Acceso Abierto es


Accesos

Este ítem aparece en la(s) siguiente(s) colección(ones)

 

Mostrar el registro sencillo del ítem

 
 

Lima 775 - C1073AAO
Ciudad Autónoma de Buenos Aires

 

Sede Recoleta: Libertad 1340 - C1016ABB
Ciudad Autónoma de Buenos Aires

 

Campus Costa Argentina: Av. Intermédanos Sur 776
Pinamar, Provincia de Buenos Aires

 
 
 

Carreras acreditadas nacional e internacionalmente