Mostrar el registro sencillo del ítem

dc.creator Lecca, Paola
dc.creator Lecca, Michela
dc.date.accessioned 2025-02-13T17:06:05Z
dc.date.available 2025-02-13T17:06:05Z
dc.date.issued 2023
dc.identifier.uri http://hdl.handle.net/123456789/15529
dc.description.abstract Graphs are used as a model of complex relationships among data in biological science since the advent of systems biology in the early 2000. In particular, graph data analysis and graph data mining play an important role in biology interaction networks, where recent techniques of artificial intelligence, usually employed in other type of networks (e.g., social, citations, and trademark networks) aim to implement various data mining tasks including classification, clustering, recommendation, anomaly detection, and link prediction. The commitment and efforts of artificial intelligence research in network biology are motivated by the fact that machine learning techniques are often prohibitively computational demanding, low parallelizable, and ultimately inapplicable, since biological network of realistic size is a large system, which is characterised by a high density of interactions and often with a non-linear dynamics and a non-Euclidean latent geometry. Currently, graph embedding emerges as the new learning paradigm that shifts the tasks of building complex models for classification, clustering, and link prediction to learning an informative representation of the graph data in a vector space so that many graph mining and learning tasks can be more easily performed by employing e cient non-iterative traditional models (e.g., a linear support vector machine for the classification task). The great potential of graph embedding is the main reason of the flourishing of studies in this area and, in particular, the artificial intelligence learning techniques. In thismini review, we give a comprehensive summary of themain graph embedding algorithms in light of the recent burgeoning interest in geometric deep learning. es
dc.format.extent 16 p. es
dc.relation.ispartof Frontiers in Artificial Intelligence, 6, 1256352 es
dc.rights Acceso Abierto es
dc.title Graph embedding and geometric deep learning relevance to network biology and structural chemistry es
dc.type ArtRev es
uade.subject.keyword Algoritmos de Incrustación de Grafos es
uade.subject.keyword Minería de Gráficos es
uade.subject.descriptor Biología es
uade.subject.descriptor Análisis de Datos es
academic.materia.codigo 3.2.186 es
academic.materia.nombre Seminarios de Bioinformática es
dc.rights.license Acceso Abierto es


Accesos

Este ítem aparece en la(s) siguiente(s) colección(ones)

 

Mostrar el registro sencillo del ítem

 
 

Lima 775 - C1073AAO
Ciudad Autónoma de Buenos Aires

 

Sede Recoleta: Libertad 1340 - C1016ABB
Ciudad Autónoma de Buenos Aires

 

Campus Costa Argentina: Av. Intermédanos Sur 776
Pinamar, Provincia de Buenos Aires

 
 
 

Carreras acreditadas nacional e internacionalmente