Título Working memory capacity and attentional networks: relationships between processing, storage and executive control components

Tipo de Producto Poster

Autores Musso, Mariel; Richards, María & Cascallar, Eduardo

Presentado en: 15th European Congress of Psychology, Amsterdam Holanda

Código del Proyecto y Título del Proyecto

P17S01 - Patrones complejos en la predicción de resultados en la educación superior: abriendo la "caja negra" de Redes Neuronales Artificiales para su mejor comprensión.

Responsable del Proyecto

Musso, Mariel

Línea

Psicología Educacional y del Desarrollo

Área Temática

Psicología

Fecha

Julio 2017

INSOD

Instituto de Ciencias Sociales y Disciplinas Proyectuales

UADE

P8.2.33

Working memory capacity and attentional networks: relationships between processing, storage and executive control components

Mariel F. Musso (National Research Council-CIIPME CONICET (Argentina)- UADE), <u>mariel.musso@hotmail.com</u> Maria Richards (National Research Council, Argentina (IPSIBAT-CONICET). National University of Mar del Plata Eduardo C. Cascallar (KU Leuven)

RESULTS

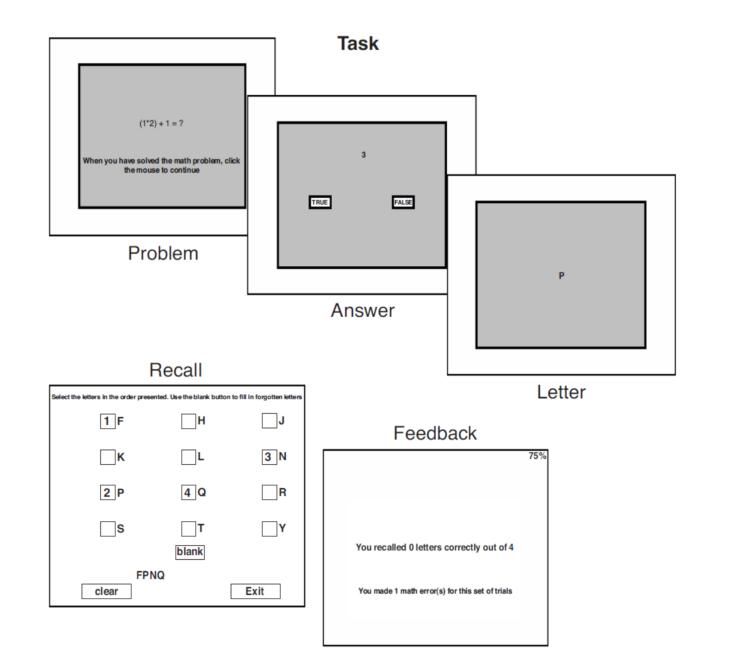
OBJECTIVES	METHODOLOGY					
 to present normative data of Working Memory Capacity (WMC) and Attentional Networks (AN). 	 1218 university students: Female: 56.6% Mean of age= 20.18; SD= 3.129, 					
 to understand the relationships between the processing/time, storage/recall and executive attention components of the cognitive system. 	enrolled in their first academic year.					

THEORETICAL BACKGROUND

Working memory capacity (WMC) has been shown to be a critical cognitive system which in interaction with attentional mechanisms participates in the production of complex higher order processes.

Working memory capacity (Unsworth & Engle, 2007; Shipstead, Lindsey, Marshall & Engle, 2014): "A system comprising encoding, maintaining, and retrieving from long-term memory the information, goals, and strategies necessary to perform a task".

(1990): Attentional Networks (Posner & Petersen, 1990):


- Orienting: is responsible for the selection of information from stimulus entering the system.
- Alerting: facilitates achieving and sustaining an alert state.
- Executive attention: refers to a system that controls interference and solves conflicts between possible responses.

Data was collected using a computer-delivered battery:

1) A sociodemographic questionnaire.

2) AOSPAN to measure WMC (Unsworth, Heitz, Schrock, & Engle, 2005). An 85% of arithmetic accuracy criterion was used to control the interference in the span test.

3) ANT to measure attentional networks: alerting, orienting and executive attention (Fan, McCandliss, Summer, Raz, & Posner, 2002)

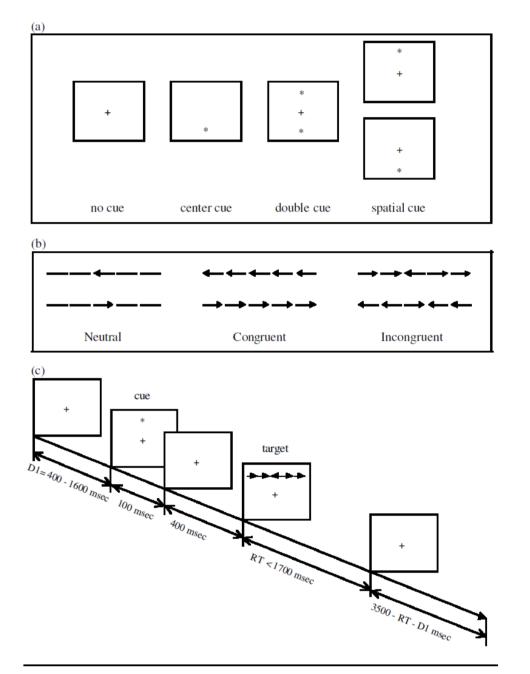
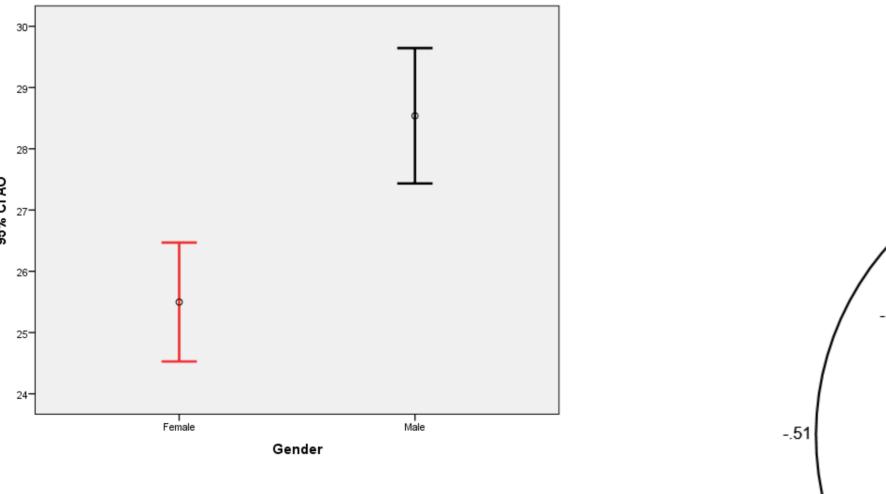
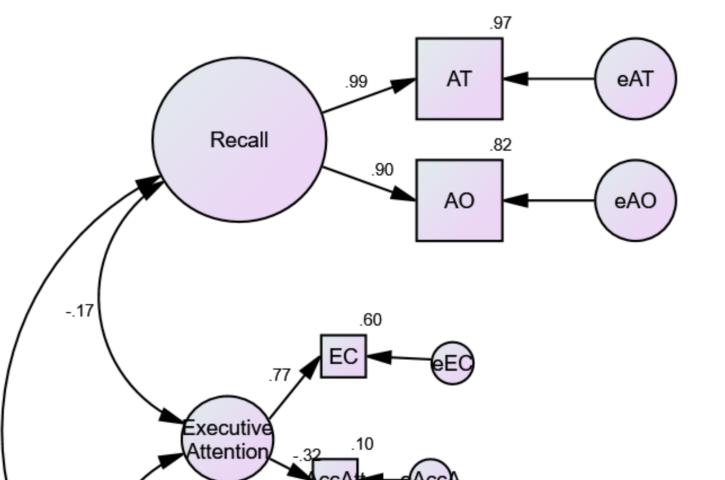



Figura extraida de Unsworth, N., Heitz, R.P., Schrock, J.C., & Engle, R.W. (2005). An automated version of the operation span task. *Behavior Research Methods*, 37(3), 498-505

Figura extraida de Fan, J., McCandliss, B. D., Sommer, T., Raz, A. & Posner, M. I. (2002). Testing the efficiency and independence of attentional networks. Journal of Cognitive Neuroscience, 14, 340-347.

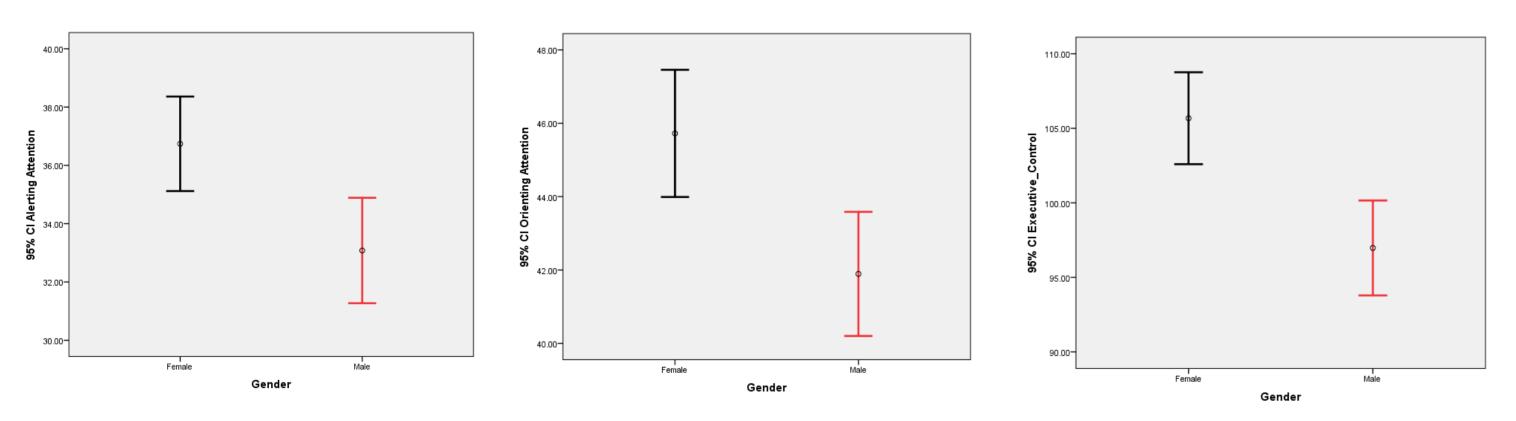
Descriptive measure	measures AOSPAN (Working Memory Capacity) (N= 1560)							Descriptive measures Attentional Networks Test (N= 1770)					
	Precision Errors	Math Errors	Recall		Speed Errors							Total	
				measure							Executive	Reaction	
Mean	6.54		8.32	27.66	47.77	1.78			Alerting	Orienting	control	Time	
SD	3.287		3.958	14.809	13.391	1.984	Mean		35.3693	43.5622	103.6627	502.3294	
Skewness	.363		.497	.295	672	2.101	SD		23.59845	23.40168	42.65829	64.25149	
Skewness error	.062		.062	.062	.062	.062	Skewness		.204	005	2.230	1.319	
Kurtosis	582		020	394	.193	6.612	Skewness error		.058	.058	.058	.058	
Kurtosis error	.124		.124	.124	.124	.124	Kurtosis		3.182	2.852	13.937	3.905	
Percentiles 5	2		3	4	22	.00	Kurtosis error		.116	.116	.116	.116	
25	4		5	17	40	.00	Minimun		-101.83	-81.50	-72.38	350.46	
33.3	5		6	20	44	1	Maximun		167.67	213.83	558.00	997.58	
50	6		8	27	49	1	Percentiles	5	1167	7.4167	53.2500	417.0833	
66.6	8		10	33	55	2		25	21.3750	29.0000	77.5000	458.8750	
75	9		11	37.75	58	2		33.3	26.0000	34.6667		470.1453	
95	13		15	54.95	67	6		50	34.7500	43.8333		492.4583	
								66.6	43.5000	52.5000		516.1657	
								75	48.9583	58.4167		533.4583	
								95	71.8917	80.9167	175.8688	621.0833	

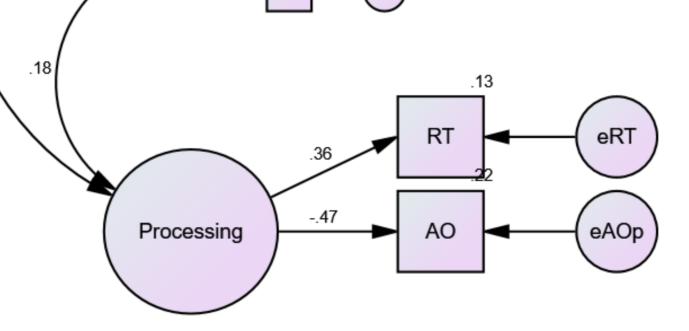

Secondary school background effects were found on recall:


students coming from private religious schools outperformed public school students (p<.05; n²=.009).

Gender effects on the recall measure of WMC (F (1,1386) = 15.770; p < .001; η^2 = .011).

Gender effects on: alerting (F (1,1370) = 8.711; p = .003; η² = .006), **orienting** (F (1,370) = 9.250; p = .002; η² = .007), **executive attention** (F (1,1367) = 14.478; p < .001; η² = .01),




A three-factor model (SEM) achieved a very good fit involving:

1- Processing/reaction time (Reaction Time and Accuracy).

2- Storage/recall (total and absolute number of letters recalled).

Males outperformed females on these measures but the magnitude of these effects were small

 χ^2 =24.838; χ^2 /gl=4.14; p=.001; NFI=.990; CFI=.992; RMSEA= .047 3- Executive attention (Accuracy and Reaction Time).

DISCUSSION

- The effect of gender on AN is consistent with those found in previous studies in adults during \bullet visuospatial tasks (Bradshaw & Nettleton, 1983; Kolb & Whishaw, 1985).
- The gender differences in WMC are consistent with previous neuroimaging studies which also found a different functional brain organization for this type of task between men and women, perhaps because of problem solving strategies used or neurodevelopment (Speck et al., 2000).
- Relative independence between WMC and Executive Attention.
- Negative correlation between reaction time and recall: slow RT/less recall

REFERENCES

- Fan, J., McCandliss, B. D., Summer, T., Raz, A., & Posner, M.I. (2002). Testing the efficiency and independence of attentional networks. Journal of Cognitive Neuroscience, 14(3), 340-347.
- Musso, M. F. (2016). Understanding the underpinnings of academic performance: The relationship of basic cognitive processes, self-regulation factors and learning strategies with task characteristics in the assessment and prediction of academic performance. Doctoral Dissertation. K.Leuven University.
- Unsworth, N., Heitz, R. P., Schrock, J. C., & Engle, R. W. (2005). An automated version of the operation span task. Behavior Research Methods, 37(3), 498-505.