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Abstract: This paper is devoted to studying the Bessel beam propagation in cylindrical
coordinates using the Hankel transform beam propagation method (HT-BPM) and their behavior
in different scenarios in the microscale and meter scale of propagation distances. The study
compares the results obtained from the HT-BPM with another fast Fourier transform beam
propagation method (FFT-BPM) to validate the accuracy and effectiveness of the HT-BPM in
modeling Bessel beam propagation. The axial intensity of Bessel beam propagation is analyzed
using the HT-BPM. The simulation results obtained from the HT-BPM are compared with those
from the FFT-BPM to evaluate the agreement and consistency between the two methods in
predicting the axial intensity of Bessel beam propagation. The results show that the HT-BPM is
numerically faster than the FFT-BPM by ten times for different sampling points, furthermore, the
FFT-BPM accuracy for evaluating the Bessel beam spot radius is 89.9% of the analytical value,
while the HT-BPM is 99% relative to analytical value. The prediction of the axial intensity of
the Bessel beam has been tested at different types of phase functions and different propagation
distances: micrometer, centimeter, and meter scales. The results of the HT-BPM are matched
with the analytical and experimental values. Finally, the HT-BPM is tested when the input light
source takes different profiles.

© 2024 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

Bessel beams exhibit unique properties such as resistance to diffraction and the ability to self-heal
their intensity distribution after encountering obstacles [1]. These characteristics make them
distinct from other types of beams and have been the focus of extensive research [2]. Bessel
beams are generated through the superposition of plane waves that have constant inclined wave
vectors lying on a cone of angle [3]. The self-healing and non-diffractive intensity distribution
have led to their potential application in various fields, in material processing, they have been
used for cutting or drilling [4,5]. The generation of the Bessel beam has been approached in
various ways, including through direct methods and nonlinear wave-mixing processes. Other
methods include the use of spatial light modulators (SLMs) or axicons to shape and control the
beams more precisely [6]. Efficient methods for generating Bessel beams continue to be crucial
for advancing research and applications in these various fields.

Durnin’s groundbreaking [1,7] work in 1987 paved the way for understanding the Helmholtz
equation in free space and its solutions in terms of Bessel functions. His studies showed that
Bessel beams are exact non-diffracting solutions to the Helmholtz equation, which remain focused
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over a certain distance without spreading out. The experimental generation of a zero-order Bessel
beam using an annular slit aperture was indeed inefficient, as a significant portion of the beam’s
intensity was blocked [8,9]. This inefficiency has driven research towards more effective methods
for creating Bessel beams. The theoretical properties of Bessel beams, recognized for their
concentric radial rings and hypothetical unlimited energy, have been extensively studied, revealing
complex modes with central dark areas or vortices [10]. In addition, SLM has played a crucial
role in the development of Bessel beam generation. They allow for the tunable axicon hologram,
providing a versatile tool for adjusting Bessel beam measurement ranges [8,11–13]. Combined
spatial phase plates and axicon phase-only holograms, along with spiral phase holograms, have
been used to generate higher-order Bessel beams, illustrating the versatility of SLM in beam
shaping [8]. Studies have shown that the intensity distribution of Bessel beams generated
through both a real axicon and an axicon hologram encoded in an SLM is similar [11], with
beams produced by SLM maintaining a flawless shape throughout the range of propagation.
These findings advocate for the use of simulated axicon holograms to generate scalar as well
as vector Bessel beams, leveraging the benefits of SLM technology over physical axicons [14].
In addition, Bessel vortex beams with a helical phase structure can be achieved through a
power-exponent-phase vortex of the Bessel beam. This approach allows for the construction of
beams with unique vortex phases, which can be utilized in various applications [15–19].

In the realm of optics and laser technology, the beam propagation method (BPM) is a widely
employed computational technique for simulating the propagation of light through diverse optical
systems [20–22]. It enables researchers and engineers to analyze the characteristics of laser beams,
such as their intensity distribution, and wavefront shape. The BPM relies on numerical solutions
to Maxwell’s equations using computational methods [23]. This method involves dividing the
optical system into smaller segments and iteratively calculating the electric field distribution in
each segment based on its interaction with neighboring segments. This iterative process continues
until a stable solution is obtained, providing valuable insights into the propagation characteristics
of the beam. The BPM is especially valuable in investigating the impact of diffraction, aberrations,
and other optical phenomena on the propagation of laser beams. Moreover, it can be employed to
optimize the design of optical systems by analyzing how changes in parameters such as beam
size, focal length, and aperture influence the propagation characteristics of the beam.

In this work, the BPM has been studied in cartesian and polar coordinates for Bessel beam
generation. The propagation of Bessel beams is accurately simulated using the HT-BPM in
cylindrical coordinates and the FFT-BPM in cartesian coordinates. A comparison between
HT-BPM and FFT-BPM in Bessel beam propagation reveals certain advantages of using the
HT-BPM method.

2. Beam propagation method (BPM)

2.1. BPM algorithm for cartesian and radial coordinates

The propagation of Bessel beams is a topic of significant interest in various fields, including
optics, telecommunications, and laser material processing [24]. In the BPM, an inhomogeneous
medium is simulated as a series of lenses (lens-like medium) within a homogeneous medium
[25,26]. The input Gaussian beam is modified by a phase-only function to generate the initial
Bessel beam, altering only the imaginary part of the Gaussian beam. This generated Bessel
beam is transformed into the spectral domain, multiplied by the propagator function, and then
propagated over a small distance through the homogeneous medium. The FFT-BPM, also known
as the spectral method, is a computational technique used to study the Bessel wave propagation.
This method is particularly advantageous due to its efficiency in modeling the propagation of
optical waves through complex and varied media [22]. Utilizing the Fast Fourier Transform (FFT)
algorithm, this method can handle large-scale problems with relative ease, allowing for accurate
simulation of wave behavior in challenging environments. Additionally, the FFT-BPM approach
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is well-suited for simulating the generation of Bessel beams using a spatial light modulator
(SLM), offering a powerful tool for studying and applying non-diffracting beams in various
optical systems. However, it is important to note the drawbacks of the FFT-BPM approach.
One limitation is the necessity for discretization, which can introduce numerical errors and
impose restrictions on the resolution and scale of simulations. Furthermore, the method may
require careful consideration and fine-tuning of parameters to accurately capture the subtleties
of wave propagation in certain scenarios [27]. For a more accurate simulation of Bessel beam
propagation, many scientists use the Wolf-Richardson (WR) equation [28] to evaluate Bessel
beam propagation accurately. The propagation of Bessel beams is more accurately simulated
using the HT-BPM in cylindrical coordinates rather than the FFT-BPM in Cartesian coordinates,
as its structure is very similar to the WR equation in [27].

In addition, the HT-BPM method directly utilizes cylindrical coordinates, which are naturally
suited for describing Bessel beams. This allows for a more accurate representation of the beam’s
radial intensity distribution [27]. By incorporating these effects, the HT-BPM method provides
a more comprehensive and realistic simulation of Bessel beam propagation. Furthermore, the
HT-BPM method allows for efficient propagation of Bessel beams with complex wavefronts or
curved trajectories and shaping the Bessel beam axial intensity. This is achieved by utilizing the
cylindrical symmetry of Bessel beams and accurately representing their propagation dynamics.
However, the disadvantage of HT-BPM is that it is only limited to cylindrical symmetry beams
such as Bessel beam [27,29].

For more investigations, the symmetric input Gaussian field is multiplied by the phase-only
function (phase retardation function) as follows:

E(r) = e−
(︂

r
wo

)︂2

e−jϕ(r) (1)

where r is the radial position, r =
√︁
(x2 + y2), and w0 is the input Gaussian beam waist. The

phase function φ(r) could be written in different ways based on the Bessel beam generation
technique, for example, in the case of axicon [30–32] as:

φ(r) = kor (n − 1)sinθ (2)

where k0 is the wavevector in free space k0 = 2π/λ, n is the axicon material refractive index, and
θ is the cone angle of the wavevectors lying on the direction of propagation. The axicon (a cone
lens) could be converted as diffractive grooves (i.e. diffractive optical element by its pixels) [11]
with height h and depth d and could be simulated by using the SLM. Thus, the phase function
can be written as [11]:

φ(r) = k0(n − 1)r
h
d

(3)

where θ = arctan(h/d) is the base angle depends on groove height h and the groove period d, and
n is the refractive index of the groove. The groove height h can be calculated as [11]:

h =
λ

n − 1
(4)

For comparison between FFT-BPM and HT-BPM, Fig. 1(a) shows the flowchart of FFT-BPM,
firstly, calculate the propagator functions based on the opto-geometric parameters. The result
from Eq. (1) is transformed to the spectral domain using the Fourier transform and the results
are multiplied by the propagator function (P(kr)). These results are then transformed back to
the spatial domain using the inverse Fourier transform and multiplied by the phase correction
function (Q(r)) which is unity in the current case (free space propagation after the SLM or
axicon), yielding the final Bessel beam distribution. These processes are repeated until the end of
propagation length. However, in cylindrical coordinates, the propagator functions are calculated
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using a different approach, considering the radial symmetry of the beam structure, furthermore,
the transverse coordinates are only half of the used in the FFT-BPM case due to symmetry of the
structure. Figure 1(b) shows the flowchart of HT-BPM. As shown, instead of using the Fourier
transform and its inverse, the HT-BPM uses the Hankel transform and its inverse [33,34] and
repeat the same process. This allows for a more efficient calculation of the propagator functions
and enables the simulation of a Bessel beam with radial symmetry. It is noted that the Hankel
transform kernels based on zeros of the Bessel function [33] should be calculated and saved at
the beginning of the simulations in case the used numerical software languages did not offer the
built-in Hankel transform functions. The absorbing guard boundary should be applied in both
algorithms to remove any back reflections.

Fig. 1. BPM flowchart for both (a) FFT-BPM and (b) HT-BPM.

It is noted that the only difference between FFT-BPM and HT-BPM is the calculation of kernel
functions [33]. Also, in the HT-BPM, the field is azimuthal and radial symmetric, consequently,
half of the transverse window is sufficient to calculate the field distribution. This means that
the HT-BPM can save computational resources compared to the FFT-BPM by only calculating
half of the transverse window [33,35]. Furthermore, the time will be reduced significantly as the
calculation of propagator functions in the HT-BPM is more efficient due to the use of Hankel
transform and its inverse instead of the traditional Fourier transform and inverse transform.

Figure 2 shows the 3D plot for the Bessel beam propagation using the HT-BPM. This technique
allows for the analysis and simulation of the propagation behavior of Bessel beams more efficiently
and accurately. It is found that by using the HT-BPM, the complex propagation characteristics of
Bessel beams can be accurately and efficiently studied and simulated. Furthermore, the HT-BPM
method provides a comprehensive understanding of the beam’s propagation behavior, including
its intensity profile, phase distribution, and focal properties. As shown in Fig. 2’s inset, the
transverse profile of a Bessel beam generated using the HT-BPM exhibits a characteristic intensity
maximum at the center, with concentric rings of decreasing intensity towards the outer edges.
The axial intensity distribution of the Bessel beam remains invariant along the propagation
direction. However, in the far region, the Bessel beam converted to be ring shape because of
diffraction. This demonstrates the capability of the HT-BPM to accurately model and analyze the
propagation of complex optical beams, such as Bessel beams, through different optical systems
and investigate their behavior under various conditions [36].
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Fig. 2. 3D plot for the Propagated Bessel beam using the HT-BPM, the images of the
propagated Bessel beam from numerical and experimental at different positions.

2.2. Comparison of execution time between FFT-BPM and HT-BPM

In the field of numerical simulations for optical fields, the choice between FFT-BPM and HT-BPM
depends on various factors such as the specific requirements of the simulation, the computational
resources available, and the complexity of the optical system being modeled. Figure 3 shows the
execution time for simulations using FFT-BPM and HT-BPM at different numbers of sampling
points. The execution time for the FFT-BPM is generally higher compared to the HT-BPM
due to the more complex calculations involved in the Fourier transformation. Additionally, the
computational complexity of the FFT-BPM increases with larger grid sizes and higher iteration
numbers. However, it is important to note that the computational execution time can vary
depending on the specific implementation of each method and the hardware used for simulations.
Overall, the choice between FFT-BPM and HT-BPM should be based on careful consideration
of the specific requirements of the simulation and the available computational resources. To
evaluate the computational execution time, a comparison was made between FFT-BPM and
HT-BPM simulations in the propagation of Bessel beams. We calculated the BPM serially using
MATLAB code on a CPU with a 12th Gen Intel, Core i9-12950HX running at 2.30 GHz and 32.0
GB of RAM. Additionally, the MATLAB code has been implemented with the following initial
parameters: an incident beam wavelength of 650 nm at a beam waist of 6 mm, a transversal
window length of 0.02 m with an interval of ∆x= 39 µm in FFT-BPM and ∆r= 19 µm in HT-BPM,
and a propagation length of 1.5 m with an interval of ∆z= 0.01 m. The chosen propagation
length is extended to test both the accuracy of the results and the speed. The simulation results
showed that the HT-BPM had a shorter computational execution time compared to the FFT-BPM.
Computational execution time is a crucial factor in determining the efficiency and feasibility of
numerical simulations.
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Fig. 3. Execution time comparison between FFT-BPM and HT-BPM at different number of
sampling points.

3. Bessel beam at different propagation scales

3.1. Bessel beam generations in comparison between FFT-BPM and HT-BPM

The Bessel beam could be generated by different techniques such as: an annular aperture [7,37],
Axicon lens [31,32,38], the diffractive optical element [39], metamaterials [40], and SLMs
[11,41,42], which provides more flexibility and higher energy throughput. A computational
comparison was conducted between the FFT-BPM and HT-BPM methods for generating Bessel
beams. The computational execution time of the two methods was compared, and it was found
that the HT-BPM method had a shorter execution time compared to the FFT-BPM method as
presented in Fig. 3. This finding suggests that the HT-BPM method may be more efficient for
generating Bessel beams in practical applications where computational speed is crucial. To
support this conclusion, the experimental scans obtained from both methods were compared to
predictions from an analytical model and experimental results. The Bessel beam, after being
generated using SLM takes the form shown in Fig. 2’s inset. In [11], the Bessel beam generated
based SLM as diffraction groves with d and h. The main loop radius [11] can be calculated as:

ρo =
2.4048d

ko(n − 1)h
(5)

Figure 4 illustrates the Bessel main loop spot radius comparison between the FFT-BPM
and HT-BPM at d= 162.5 µm, the refractive index n= 1.51637, the light beam wavelength
λ= 0.65 µm, and h= 1.2 µm. As shown, the FFT-BPM accuracy is 89.9% of the analytical
value, while the HT-BPM is 99% relative to the analytical value. This enhancement is crucial
in applications like micromachining or laser ablation with femtosecond lasers utilizing Bessel
beams, where surface roughness is a significant factor. In these applications, the diameter of the
drilling holes ranges from 1 to 5 µm. Therefore, precise modeling is essential, and HT-BPM
provides these advantages.

Additionally, Fig. 5 shows the Bessel beam spot radius at different values of groove period
d. As shown, the HT-BPM is very close to the analytical values. Furthermore, in the figure
inset the HT-BPM is smaller in relative error than the FFT-BPM to predict the Bessel beam spot
radius. These results show that the HT-BPM is more accurate in Bessel beam propagation than
the FFT-BPM.
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Fig. 4. Bessel beam field comparison between FFT-BPM and HT-BPM.

Fig. 5. Accuracy curve of predicting the Bessel beam spot radius comparison between
HT-BPM and FFT-BPM. The inset is the relative error between FFT-BPM, HT-BPM, and
analytical calculated from Eq. (5).

3.2. Axial intensity of Bessel beam in comparison between FFT-BPM and HT-BPM at
meter scale using the model

Understanding the axial intensity of Bessel beams is important in various applications, such as
optical tweezers [43–45], microscopy [46,47], and laser drilling [5,48–52]. Researchers and
engineers continue to explore the properties and potential uses of Bessel beams in different fields,
making them an interesting subject of study in the field of optics and photonics. To test the
HT-BPM to simulate the Bessel beam propagation in meter scale, the analytical form of the
Bessel beam intensity along the propagation direction z could be written as [11]:

I(z) = 2A2πk0z
(︃
h
d

)︃2
(n − 1)2exp

[︄
−2

(︃
(n − 1)zh

wod

)︃2
]︄

Io (6)

where Io is the intensity of the initial Bessel beam by squaring the results from Eq. (1) after the
SLM or Axicon is normalized by A= 1.

Figure 6 shows the normalized axial intensity of the propagated Bessel beam, as shown in
the figure both the BPM methods are compatible with the analytical and experimental values
along the propagation direction as expected. However, the HT-BPM is more accurate than the
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FFT-BPM, as shown in Fig. 6’s inset, the relative error of the HT-BPM is very small compared
to the FFT-BPM.

Fig. 6. Axial intensity of the Bessel beam along the propagation axis, the comparison
between FFT-BPM and HT-BPM, analytical, and experimental results in [11].

3.3. Axial Intensity of Bessel beam in comparison between FFT-BPM and HT-BPM at
micrometer scale

For more comparison, in real experiments to generate the Bessel beam after using SLM, the axial
intensity distribution of the Bessel beam can be measured and analyzed. By using appropriate
measurement arrangements and techniques, the axial intensity distribution of the Bessel beam
can be quantified and studied in real experimental setups. In micro-drilling applications, in
silicon packaging, the spot size of the Bessel beam should be in the range of 1 ∼ 5 µm [51,53],
So, optical magnifications (telescope) should be used for the generated Bessel beam. After the
telescope the propagation distances in a micrometer scale. The axial intensity could be calculated
from the relation [30]:

I(z) = 8πI0nz
sin2θ

λw2
0

e−2
(︂

zsinθ
w0

)︂2

(7)

Figure 7 shows the axial intensity of the Bessel beam in the range of 50 µm. The BPM is in
good agreement with analytical and experimental values. However, the HT-BPM will be suited to
model the Bessel beam propagation as its relative error is smaller than the FFT-BPM as illustrated
in Fig. 7 inset. Given the nature of HT-BPM being a radial coordinate, the results aligned
with expectations that the relative error for HT-BPM would be significantly lower compared
to FFT-BPM, which operates in Cartesian coordinates. Thus, numerical errors may arise from
discretization and conversion between radial and Cartesian systems.

3.4. Experimental validation of using the HT-BPM in Bessel beam propagation at the
centimeter scale

In this section, the validation of Bessel beam axial intensity using the beam propagation method
is discussed. This validation involved comparing the results obtained from HT-BPM, FFT-BPM,
and the analytical model. Furthermore, the experimental setup used for this validation included a
laser source and optical components for beam shaping, ensuring precise control over the Bessel
beam’s characteristics and parameters. Figure 8(a) shows the block diagram of the experimental
setup. The He-Ne laser has a wavelength of 632.8 nm, and the first polarizer (P1) is used to
control the laser power. A spatial filter is adopted to produce a clean Gaussian beam and expand
the beam size to nearly 8 mm. The second polarizer (P2) has a horizontal transmission axis
to ensure the laser maintains the p polarization. The laser is normally incident to an SLM
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Fig. 7. Axial intensity of the Bessel beam along the propagation axis, and the comparison
between FFT-BPM and HT-BPM, analytical, and experimental results from [30], as shown
in the black line in the back of the red dashed line. The inset shows the relative error between
FFT-BPM and HT-BPM with analytical calculated from Eq. (7).

(PLUTO-2.1-NIR-134, HOLOEYE Photonics, Germany) which is employed to generate a phase
mask. The shaped laser beam is reflected by a beam splitter (BS) and finally recorded by a beam
profiler (SP920s, Ophir Optronics) at different axial positions. Figure 8(b) shows the photographs
of the system setup.

He-Ne laser
632.8 nm

P1

Objective L

Beam expander

P2

Beam profiler

SLM

BS

PC

He-Ne laser P1

Objective L

(a)

(b)

P2 BS
SLM

Beam 
profiler

Fig. 8. The experimental setup for Bessel beam: (a) block diagram; (b) photograph.

Figure 9 shows the axial beam intensity profile along the propagation axis, and a comparison
between the FFT-BPM, HT-BPM, analytical values from Eq. (6), and the measured values
using the setup in Fig. 8(b) is illustrated. The observed shift in measurements occurs because
the measurements commenced after the beam splitter depicted in Fig. 8(b). The validation
results demonstrate strong concordance between the two methods, thereby verifying the accuracy
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and dependability of employing the HT-BPM for Bessel beam modeling. Axial intensity
measurements of the Bessel beam, conducted using a beam profiler, revealed that both methods
produce highly consistent results. However, as illustrated in Fig. 9’s inset, the HT-BPM is superior
in accuracy and exhibits a lower relative error compared to the FFT-BPM. It is important to note
that discrepancies between measured and simulated data may arise due to practical experimental
issues. For instance, the actual beam shape could deviate from an ideal Gaussian beam, and
despite precise alignment of the optical setup, the beam might still be incident at a slight angle to
the SLM.

Fig. 9. The axial intensity of the Bessel beam along the propagation axis, the comparison
between FFT-BPM and HT-BPM, analytical, and measured experimental results using the
setup in Fig. 8, due to the space between the SLM, beam splitter, and beam profiler the
measurements started at 0.2 m.

4. Advantages and disadvantages of FFT-BPM and HT-BPM

Here the advantages and drawbacks of FFT-BPM and HT-BPM are discussed.

4.1. FFT-BPM

About advantages, the FFT-BPM has low complexity due to its banded-matrix approximation. It
is also efficient in terms of implementation because the fast Fourier transform is widely used
and optimized for parallel computers. In the FFT-BPM, there are also no limitations for the
system symmetry. In addition, the FFT-BPM can handle a large number of sampling points,
allowing for high-resolution simulations [54]. This makes it a powerful tool for studying complex
optical systems and analyzing the effects of various parameters on wave propagation. About
disadvantages, the FFT-BPM may not be suitable for certain applications that require the use of
other discrete transforms, such as the discrete cosine transform, or discrete sine transform. From
a numerical point of view, the FFT-BPM is particularly well-suited for systems with a radix 2
power of sampling points [54] (ex. 210, 211, . . . etc.).

4.2. HT-BPM

About advantages, the HT-BPM is more flexible than the FFT-BPM as it allows for the use of
different discrete transforms, such as the discrete cosine transform or discrete sine transform, to
locate patterns. This flexibility can be advantageous for certain applications that require specific
types of discrete transformations. The execution time is shorter than the FFT-BPM and there is no
need for a radix 2 power of sampling points. About disadvantages, it is used only for symmetric



Research Article Vol. 32, No. 17 / 12 Aug 2024 / Optics Express 30252

systems due to the limitations of the Hankel transform from 0 to ∞ [33]. In nonsymmetric beam
systems, the radial Fourier transform beam propagation method may prove to be the optimal
choice. The inherent limitation of the Hankel transform is its reliance on radial and azimuthal
symmetry. In the future, we aim to address this limitation by incorporating different models such
as the discrete fractional Hankel transform [55–57]. This approach appears promising and could
pave the way for further advancements in this field.

5. Persistent need to use BPM in Bessel beam modeling

5.1. Different input beam profiles to generate Bessel beam

The analytical study for most Bessel beam propagations with different light source beam shapes
is not available, in such cases a numerical model is highly indigent. For more illustration, Fig. 10
shows the axial intensity profile of the Bessel beam with different input beam profiles: Gaussian
and super-Gaussian (flat-top) which have already been discussed by authors [58,59]. The shaping
of the input light beam could take other shapes such as Lorentzian and super-Lorentzian. Figure 10
shows a comparison between different input beam profiles: Gaussian, super-Gaussian, Lorentzian,
and super-Lorentzian. It can be concluded that by changing the input beam profile, the axial
intensity will not remain the same for all cases as in Gaussian and Lorentzian beams, however, it
could be a similar profile such as in super-Gaussian and super-Lorentzian cases. Furthermore,
in the Bessel beam case, the beam is well collimated so that its angular extent is limited to a
narrow region of space around the beam axis, this means that the plane wave components in the
spatial spectrum have very small values of the transverse wavenumbers. It is said that Kr is much
smaller than Kz, hence high frequencies in the propagated field are negligible.

Fig. 10. Axial intensity of the Bessel beam along the propagation axis at different input
field profiles: Gaussian, flat-top (super-Gaussian), Lorentzian, and super-Lorentzian.

Moreover, the applications of Bessel beam propagation are extensive and diverse in spanning
fields such as optics, acoustics, and electromagnetic waves. The unique properties of Bessel
beams, including their non-diffracting and self-healing nature, make them highly desirable for
various applications. These applications include optical communications, laser micromachining,
optical trapping, propagation through turbulent atmospheres, and medical imaging.

The use of the Hankel transform alongside BPM results in more accurate outcomes for modeling
Bessel beams compared to FFT-BPM. The Hankel transform maintains the cylindrical symmetry
of Bessel beams, enabling a more precise depiction of their intensity profiles, especially crucial
in applications that require precise axial intensity with various shaping structures. Frequently,
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to shape axial intensity, the standard equation is altered by integrating the phase of the ring
structure. Under these conditions, the Hankel transform is more precise than the Fast Fourier
transform in predicting the axial intensity of Bessel beams. Additionally, in applications involving
femtosecond Bessel beam drilling, where complex structures like air-to-glass or air-to-silicon
transitions are present, a phase correction factor different from unity (Q(r)≠1) is used. Future
research will focus on applications such as optical needles and axial intensity shaping, where
HT-BPM is anticipated to be highly accurate and particularly well-suited.

6. Conclusions

In this study, the HT-BPM has been introduced to simulate the propagation of Bessel beams. The
HT-BPM exhibits a tenfold increase in speed compared to the FFT-BPM. While the FFT-BPM
achieves an accuracy of 89.9% in determining the Bessel beam spot radius relative to the analytical
value, HT-BPM achieves 99% accuracy. Comparisons of axial intensity between HT-BPM and
FFT-BPM for both analytical and experimental values were conducted across various propagation
distances including meters, centimeters, and micrometers. The results indicate that HT-BPM
provides a more accurate prediction of the Bessel beam’s axial intensity with a smaller relative
error compared to FFT-BPM for analytical and experimental data. Additionally, HT-BPM has
been applied to model different input beam shaping, demonstrating that changes in the input
beam profile affect axial intensity. Future work will expand this study to include Bessel beams in
inhomogeneous media and with varying polarizations of Bessel beams. In conclusion, HT-BPM
stands out as a faster and more accurate method for simulating Bessel beams’ propagation
characteristics as compared to FFT-BPM.
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