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Figure 1: Visualization of the interface of a gas/liquid flow.

ABSTRACT
Many complex simulations are extremely expensive and hardly if
at all doable, even on current supercomputers. A typical reason for
this are coupled length and time scales in the application which
need to be resolved simultaneously. As a result, many simulation
approaches rely on scale-splitting, where only the larger scales are
simulated, while the small scales are modeled with subfilter models.
This work presents a novel subfilter modeling approach based on AI
super-resolution. A physics-informed enhanced super-resolution
generative adversarial network (PIESRGAN) is used to accurately
close subfilter terms in the solved transport equations. It is demon-
strated how a simulation design with the PIESRGAN-approach can
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be used to accelerate complex simulations on current supercom-
puters, on the example of three fluid dynamics simulation setups
with complex features on the supercomputer environment JURECA-
DC/JUWELS (Booster). Further advantages and shortcoming of the
PIESRGAN-approach are discussed.
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1 INTRODUCTION
Computing flow problems by solving the Navier-Stokes equations
or equations derived from them, potentially coupled with multi-
physics phenomena, belongs to themost established high-performance
computing (HPC) applications, yet still some problems remain im-
possible to solve even using today’s fastest supercomputing systems.
Typical engineering-type flow applications have in common that
a simulation needs to properly discretize the large-scale flow be-
havior, such as enforced by geometry features. Turbulent flows,
however, come with an additional challenge: All length scales are
coupled, requiring to fully resolve all scales down to the smallest
scale of fluid motion to accurately predict its behavior. Additionally,
the more turbulent a flow is, measured by the Reynolds number,
i. e., the ratio of inertial forces to viscous forces, the wider large and
small scales are separated [45]. Therefore, direct numerical simula-
tions (DNSs), which aim to resolve all scales, become very expensive
for common engineering problems, which are often strongly tur-
bulent to, e. g., benefit from faster mixing time scales. Thus, many
flow simulations require modeling of smaller scales to become com-
putationally affordable. One commonly used modeling approach
is large-eddy simulation (LES) [44, 45]. In LES, the flow scales are
decoupled by a filter operation, solving only for the larger scales.
The effect of the small scales below the filter on the larger scales
is modeled by means of subfilter models, such as the Smagorinsky
model [47].

A model transport equation for a scalar 𝜙 over time 𝑡 reads

𝜕𝑡 (𝜌𝜙) + ∇ · (𝜌𝜙u) = ∇ · (𝐷∇ (𝜌𝜙)) + ¤𝜔, (1)

where ∇ is the del operator corresponding to spatial coordinates, 𝜌
the density, u the velocity vector, 𝐷 the molecular diffusivity, and
¤𝜔 the source term. Solving (1) directly along with other equations,
such as for density, momentum, and energy, would be called DNS
if the simulation resolves all relevant scales sufficiently. A filter
kernel 𝐺 (r) is used to decouple the large and small scales in LES.
This operation can be defined as

{·}(x) =
∭

𝐺 (r){·}(x − r) dr, (2)

where an overbar denotes filtered quantities. Examples for 𝐺 are
the symmetric Gaussian filter kernel (cf. Fig. 3) and wavenumber
cut-off filter kernels. For compressible and variable density flows,
it is convenient to work with Favre-filtering, denoted with a tilde
and defined as 𝜌 {̃·} = 𝜌{·}. A quantity can then be split into a
filtered part and the subfilter contribution as {·} = {̃·} + {·}′′ with
{̃·}′′ = 0. Applied to (1) and assuming constant diffusivity and
Reynolds operators, the Favre-filtered equation reads

𝜕𝑡
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𝜌𝜙

)
+ ∇ ·

(
𝜌𝜙 ũ

)
= 𝐷∇2

(
𝜌𝜙

)
+ ¤𝜔 − ∇ ·

(
𝜌�𝜙 ′′u′′

)
, (3)

which looks very similar to the unfiltered equation (1) but features
one additional term, put as last term here. All but this last term
contain only filtered quantities, which can be fully resolved, as
the very small scales, which might be impossible to resolve, are
removed by the filter. However, the additional term in (3) contains
subfilter contributions, which cannot be resolved in LES and thus
this term is unclosed and requires modeling.

Turbulent combustion is a particular challenging engineering
flow problem, which requires to accurately predict chemistry. This

can be done by low-order combustion models, such as flamelet
approaches [6, 15], or by solving a set of coupled partial differen-
tial equations (PDEs) for individual species along with the flow
equations, often referred to as finite-rate-chemistry model. While
low-order combustion models are sufficient for multiple engineer-
ing problems, they are currently not able to predict all different
flame-related phenomena accurately and thus are a topic of ongoing
research. Finite-rate-chemistry models on the other hand are able
to consider most flame-effects as long as a sufficient reaction mech-
anism can be used but make the simulations much more expensive
than turbulent-only cases and the resulting data are very big, as the
data of all scalar fields need to be stored. Furthermore, the smallest
chemistry-related scales can be even smaller than the flow scales
and thus require an even finer mesh to, e. g., sufficiently discretize
a reaction zone [44]. Overall, simulations of turbulent flows with
combustion quickly become prohibitively expense and are thus
often run on the largest supercomputers available. Furthermore, an
accurate prediction of emissions with reduced order models is still
challenging, as emphasized by recent literature [14, 19, 29, 37, 51],
and thus, a turbulent premixed combustion problem makes an ex-
cellent target case for the present work.

Multiphase flows are another important problem class, and par-
ticularly interfacial flows [50] are tough. During breakup or liga-
ment formation, infinitesimally small structures appear, which are
typically impossible to fully resolve. Therefore, simulations often
become grid dependent. As the accurate prediction of interfaces
is often the first step for predicting subsequent processes, such as
chemistry that occurs at the interface, improved predictability with
reduced order models or in LES is crucial and the second target
case presented here.

This paper presents the application of AI super-resolution-based
subfilter models for LES, which have been recently developed [1–
5, 11–13], and focuses on their prediction quality for multi-physics
problems. AI super-resolution or single image super-resolution
(SISR) problems have gained a lot of attention from the computer
science community. In such SISR problems, machine learning (ML)
or deep learning (DL) techniques are employed to add information
into images to increase the image resolution (i. e., to super-resolve
the image). Usually, a network is trained with a large number of
images to extract and learn features which are consecutively added
to the super-resolved target image based on local information. Thus,
they exceed classical techniques, such as bicubic interpolation. Ref-
erence [17] introduced a super-resolution convolutional neural
network (SRCNN), a deep convolutional neural network (CNN) for
directly learning the end-to-end mapping between images with
low and high resolution. Their approach has been continuously
improved [18, 31, 33, 34, 36, 46, 49, 53] to correct multiple short-
comings, such as oversmoothed results, and improve the prediction
accuracy by, e. g., introducing the concept of perceptual loss in order
to better predict high frequency details. Reference [40] suggested to
use generative adversarial networks (GANs) [28] instead of CNNs,
which were further updated to the enhanced super-resolution GAN
(ESRGAN) [52].

The ambition to add information based on the local state makes
AI super-resolution a promising tool for any kind of underresolved
simulation and experimental data, such as from satellites forweather
prediction or many HPC problems, ranging from climate research
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[48] to cosmology [41]. However, this work focuses on the applica-
tion of AI super-resolution for LES subfilter modeling to efficiently
advance flow simulations in time. For that, a decaying turbulence
case is discussed as base case. Afterward, two relevant engineering
problems, a turbulent premixed flame kernel setup and a tempo-
rally evolving interfacial jet, are used to emphasize the prediction
accuracy of PIESRGAN for complex multi-physics flows. Physical
aspects of the three demonstration cases are not in the scope of this
work and hence are only briefly discussed, as needed in order to
emphasize the advantages of PIESRGAN.

LES is a widely established approach in fluid dynamics. However,
until today, no general closure model exists and reproduction of
complex flows with LES is still a challenge. Reference [13] intro-
duced PIESRGAN as systematic subfilter framework for LES and
showed accurate results for turbulence and a simple combustion
case. However, they explicitly state that the computing performance
is still a big issue, preventing PIESRGAN-subfilter models from ap-
plication in relevant LESs. Therefore, the focus of this work is to
describe the usage of PIESRGAN on current supercomputers and
demonstrate how it can be used in practically relevant cases. The
three major contributions of this work are:

• An efficient implementation of PIESRGAN for HPC systems
is described and discussed.

• The prediction quality for multiple multi-physics is given,
and generality aspects are emphasized.

• Industrially relevant workflows are discussed and outlined.
This paper is structured as follows: The next section explains the

AI super-resolution subfilter modeling approach, including the ar-
chitecture, the algorithm, and implementation details. Afterwards,
three HPC simulations are used to demonstrate the prediction ac-
curacy of the AI super-resolution-based modeling approach. In-
dustrially relevant and generality aspects are discussed. The paper
finishes with conclusions.

2 AI SUPER-RESOLUTION SUBFILTER
MODELING

This section describes the employed architecture for all examples
in this work, the algorithm for advancing simulations with AI
super-resolution-based subfilter modeling, and gives implementa-
tion details. In more detail, the so-called physics-informed enhanced
super-resolution GAN (PIESRGAN) [13] is used, which extended
and modified ESRGAN for flow LES-subfilter modeling and follows
a hybrid approach. The subfilter modeling is done by PIESRGAN,
but the simulation as a whole is advanced classically with the fil-
tered equations, i. e., the time integration is not incorporated within
the neural network, as, e. g., done in [26]. An important advantage
of keeping time integration and subfilter modeling separated is the
universality with respect to, e. g., different geometries and setups.
Furthermore, the equations for advancing in time are well-known
and a lot of experience exists. In PIESRGAN, physically motivated
conditions are enforced as part of the loss function, i. e., the target
function, which is minimized at training of the network.

To elaborate further, inmany engineering problems, the resulting
flow topologies often depend on the chosen boundary conditions
enforced by the geometry or setup. Therefore, it is often desirable
to rely on universality at the smallest scales and to compute the

topology by solving the equations in time. This may be different
for other applications, such as Earth system modeling. There, the
boundary conditions are typically very similar, and thus the advan-
tages of including time integration in the network may prevail. In
general, data-driven methods work best as long as the problems
have some universal behavior that can be learned. Consequently,
the data-driven approach should preferably work on this scale of
universality, which depends on the application.

The subfilter modeling approach technically works with any kind
of data. However, it makes most sense if the data feature some kind
of universality, which can be learned. As an example, turbulence
is known to feature some universality on the smallest scales [24].
Therefore, it is an ideal application for any kind of super-resolution.
AI super-resolution also works for quantities without universal
behavior on the smallest scales, as, e. g., reacting chemical species.
However, it was found that it requires to solve additional equations
on the reconstructed fields to improve the accuracy [1].

2.1 Architecture
PIESRGAN is a GAN model, which are generative models that
aim to estimate the unknown probability density of observed data
without an explicitly provided data likelihood function, i. e., with
unsupervised learning. Technically, a GAN has two networks: The
generator network is used for modeling and creates new mod-
eled data. The discriminator tries to distinguish whether data are
generator-created or real data and provides feedback to the genera-
tor network. Thus, as the learning process advances, the generator
gets better at creating data as close as possible to real data, and
the discriminator learns to better identify fake data. This process
can be thought of as two players carrying out a minimax zero-sum
game to estimate the unknown data probability distribution.

The network architecture and training process are sketched in
Fig. 2. Fully resolved 3-dimensional (3-D) data ("H") are filtered to
get filtered data ("F"). The filtered data is used as input to the gener-
ator for creating the reconstructed data ("R"). The accuracy of the
reconstructed data is evaluated by means of the fully resolved data.
The discriminator tries to distinguish between reconstructed and
fully resolved data. The accuracy of the reconstruction is measured
by means of the loss function, which reads

L = 𝛽1𝐿adversarial + 𝛽2𝐿pixel + 𝛽3𝐿gradient + 𝛽4𝐿physics, (4)

where 𝛽1, 𝛽2, 𝛽3, and 𝛽4 are coefficients weighting the different loss
term contributions, with

∑
𝑖 𝛽𝑖 = 1. In (4), the adversarial loss is

the discriminator/generator relativistic adversarial loss [32], which
measures both how well the generator is able to create accurate
reconstructed data compared to the fully resolved data and how
well the discriminator is able to identify fake data. The pixel loss and
the gradient loss are defined using the mean-squared error (MSE) of
the quantity itself and of the gradient of the quantity, respectively.
The physics loss enforces physically motivated conditions, such as
the conservation of mass, species, and elements, depending on the
underlying physics of the problem. For the premixed flame kernel
application in this work, it reads

𝐿physics = 𝛽41𝐿mass + 𝛽42𝐿species, (5)

where 𝛽41 and 𝛽42 are coefficients weighting the different physical
loss term contributions, with

∑
𝑖 𝛽4𝑖 = 1. Element conservation was



PASC ’23, June 26–28, 2023, Davos, Switzerland Bode

found to be not important for this case, and therefore, the poten-
tial term 𝛽43𝐿elements in (5) was set to zero here, i. e., 𝛽43 = 0, and
is omitted. However, the importance of this term depends on the
chemical mechanism used and is usually not known before testing
[1, 3, 11]. If numerical tests show that this term can be omitted,
this simplifies the training process. The physically motivated loss
term is very important for the application of PIESRGAN to flow
problems. If the conservation laws are not very well fulfilled, the
simulations tend to blow up rapidly, which is an important differ-
ence to super-resolution in the context of images. Errors, which
might be acceptable there, can be easily too large for the usage as
subfilter model [13].

The generator heavily uses 3-D CNN layers (Conv3D) [35] with
kernel size of 3 and stride 1 combined with leaky rectified linear
unit (LeakyReLU) layers for activation [42]. The residual in residual
dense block (RRDB), which was introduced for ESRGAN is essential
for the performance of state-of-the-art super-resolution. It replaced
the residual block (RB) employed in previous architectures and
contains fundamental architectural elements such as residual dense
blocks (RDBs) with skip-connections. A residual scaling factor 𝛽RSF
helps to avoid instabilities in the forward and backward propaga-
tion. RDBs use dense connections inside. The output from each
layer within the dense block (DB) is sent to all the following layers.
The discriminator network is simpler. It inherits basic CNN layers
(Conv3D) combined with LeakyReLU layers for activation with
and without batch normalization (BN). The final layers contain a
fully connected layer with LeakyReLU and dropout with dropout
factor 𝛽dropout. For all cases in this work, 80 layers for the gen-
erator network and 28 layers for the discriminator network were
used. A summary of all hyperparameters is given in Tab. 1. The
hyperparameter value range was evaluated by a hyperparameter
study with multiple physical applications, partly supported by Au-
toML. Generally, the network hyperparameters were found to be
robust with respect to the different test cases, i. e., a working com-
bination for one case usually results also in sufficiently accurate
results for other cases. However, the complex combustion cases
presented in this work require more physically motivated terms
as part of the loss function than the cases discussed in [13]. As
the additional terms for 𝐿physics implicitly lower the weight for the
originally mass conversation enforcement term, the range for 𝛽4
was increased. Consecutively, the lower bound for 𝛽2 was reduced
to fulfill the summation condition.

Table 1: Overview of the PIESRGAN hyperparameters. The
given ranges represent the sensitivity intervals with accept-
able network results. The central values were used for the
decaying turbulent case in this work.

𝛽1 [0.2 × 10−5, 0.6 × 10−4, 0.8 × 10−4]
𝛽2 [0.721, 0.890, 0.918]
𝛽3 [0.04, 0.06, 0.15]
𝛽4 [0.01, 0.05, 0.18]
𝛽RSF [0.1, 0.2, 0.3]

𝛽dropout [0.2, 0.4, 0.5]
𝑙generator [1.2 × 10−6, 4.5 × 10−6, 5.0 × 10−6]

𝑙discriminator [4.4 × 10−6, 4.5 × 10−6, 8.5 × 10−6]

2.2 Algorithm
The established LES equations are used to advance a PIESRGAN-
LES in time. As a consequence of the filter operation to the equa-
tions, unclosed terms appear, which require information from below
the filter width to be evaluated. The LES subfilter algorithm aims
to reconstruct this required information to close the LES equations.
This is done during every time step. For the cases including chem-
istry, the chemistry can be included in the PIESRGAN during the
training process [1]. As chemistry is often only locally active, this
can be also used to save computing time by adaptively solving only
in relevant regions. The algorithm starts with the LES solution Φ𝑛F
at time step 𝑛, which includes the entirety of all relevant fields in
the simulation, and consists of repeating the following steps:

(1) Use the PIESRGAN to reconstruct Φ𝑛R from Φ𝑛LES.
(2) (Only for nonuniversal quantities) Use Φ𝑛R to update the

scalar fields of Φ to Φ𝑛;updateR by solving the unfiltered scalar
equations on the mesh of Φ𝑛R.

(3) Use Φ𝑛;updateR to estimate the unclosed terms Ψ𝑛
LES in the LES

equations of Φ for all fields by evaluating the local terms
with Φ

𝑛;update
R and applying a filter operator.

(4) Use Ψ𝑛
LES and Φ𝑛LES to advance the LES equations of Φ to

Φ𝑛+1LES .

2.3 Training Details
For all shown examples, the data were split in data for training and
testing to avoid reproduction of fully seen data. During the training
and querying processes, it was found that consistent normalization
of quantities is very important for highly accurate results [13]. For
example, turbulence and combustion feature some quantities which
show a logarithmic behavior. A normalization and transformation
to a nonlogarithmic scale supports the learning capability of the
neural network. Furthermore, the training and the reconstruction
are done based on subboxes, as reconstructing too big boxes at
once can become very memory intensive. Typically, each subbox is
chosen large enough to cover the relevant physical scales [13], and
sizes of 163 to 323 gave good results for the test cases presented in
this work. The filter width can become problematic if nonuniform
meshes are employed. In these cases, training with multiple filter
widths is suggested to achieve good accuracy throughout the full
domain [3].

One usual challenge during the training process is the initializa-
tion of the network weights. To simplify the training process, the
trained weights of the turbulence-only case were used to initialize
the weights of the networks for the combustion cases. Afterwards
generator and discriminator can be further updated with the case-
specific data. However, it was found that a further update of the
discriminator weights is often not desirable, and generator-only
updates lead to better general prediction results.

The potential extrapolation capabilities of data-driven methods
is always an issue. Many trained networks only work well in re-
gions which were accessible during the training process. This can
become very problematic for flow applications, where often data at
low Reynolds numbers is abundant, while data at high Reynolds
numbers is not computable at all, making transfer learning diffi-
cult. To deal with this problem, concepts, such as two-step training
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Figure 2: Sketch of PIESRGAN. "H" denotes high-fidelity data, such as DNS data, "F" are corresponding filtered data, and "R"
are the reconstructed data. The components are: Conv3D - 3D Convolutional Layer, LeakyReLU - Activation Function, DB -
Dense Block, RDB - Residual Dense Block, RRDB - Residual in Residual Dense Block, 𝛽RSF - Residual Scaling Factor, BN - Batch
Normalization, Dense - Fully Connected Layer, Dropout - Regularization Component, 𝛽dropout - Dropout Factor. Image from
[13] which is under CC BY 4.0 license.

approaches [13], can be used, relying on the enhanced prediction
capabilities of GANs, as compared to single networks [1]. This open
question is outside of the scope of the present work, hence only
interpolation cases are discussed here.

2.4 High-Performance Computing
Implementation Details

State-of-the-art supercomputers get most of their performance from
GPUs. As an example, each JURECA-DC GPU cluster node at Jülich
Supercomputing Centre, Forschungszentrum Jülich, features two
AMD EPYC 7742 CPUs with a total of 128 cores and four Nvidia
A100 GPUs resulting in 2322 EFLOP. 94.4 % of this performance
comes from the GPUs, while all CPU cores only account for 5.6 %.
Any efficient HPC implementation must therefore make maximum
use of the GPUs, and to efficiently employ GPUs, PIESRGAN was
implemented using a TensorFlor/Keras framework with OpenMP,
MPI, and CUDA. The implementation details for training and simu-
lation with PIESRGAN are described in the following two sections.

The implementation could be simplified if the computing power
of the CPUs would be neglected and everything would be com-
puted on the GPUs. Considering the FLOP performance, this would
only lead to small losses on modern computing nodes, as discussed
for the JURECA-DC GPU cluster nodes. However, two practical
reasons oppose: First, for many cluster nodes, the ratio between
CPU cores and number of GPUs is larger, shifting the available
computing power in the direction of the CPUs. Second, and more
importantly, many complex compute codes for simulations are not
ported to GPUs yet and might never be. Therefore, they would not
be able to employ a GPU-only approach, making a high portabil-
ity unavoidable considering currently used software frameworks.
As a consequence, the approach pursued in this work relies on a
well-defined API, as described for the simulation workflow below.
However, using CPUs and GPUs also means that an imbalance be-
tween load on CPUs and GPUs might thwart the overall simulation
performance, as, e. g., the GPUs often need to wait until the CPUs
finished advancing their equations. As mentioned before, the size
of the reconstructed subboxes can be used to balance this load. The

bigger the subboxes, the more expensive for the GPUs, but the less
number of cells are required on the LES mesh processed by the
CPUs. Note that the API can be also used with CPUs on both sides,
enabling to run PIESRGAN-LES on CPU-only clusters as well.

2.4.1 Training Workflow. Two different training situations need to
be distinguished: Training with stored data and on-the-fly training
during simulations without explicitly storing the data. The em-
ployed implementation with stored data is trivial. A outer loop
implemented in Python loads the data and generates data chunks
which are then distributed to GPUs for training. Filtering and other
preprocessing steps are done separately. The on-the-fly training
is more advanced. For that, a hybrid parallelization with OpenMP
(on node level) and MPI (between nodes) is employed. The advan-
tage of this implementation is that the CPU cores per node can be
distributed in cores used for the simulation and cores used for gath-
ering and preparing the current results for training on the GPUs,
which are accessed with CUDA. Due to the OpenMP parallelization
on node level, the cores for data processing have access to all data.
Filtering of the data is done on the GPUs. On-the-fly training was
used for the premixed combustion case in this work. A ratio of four
data CPU cores to 28 simulation CPU cores resulted in an efficient
execution. On-the-fly training significantly reduces the cost for
data movement and storing, however, it has the limitation that only
one training iteration is possible.

2.4.2 Simulation Workflow. To perform PIESRGAN-LES at full
scale of current supercomputers, an efficient HPC implementation is
required. The implementation of PIESRGAN utilized in this work is
fully executed on GPUs and connected to the CPUs, which advance
the flow equations, by an API. The application of the filtering as
part of PIESRGAN on the GPUs is crucial for two reasons: First, the
filter operation is not cheap, and the execution as tensor operation
on the GPUs is time-efficient. Second, the filtering significantly
reduces the amount of data transfer between CPUs and GPUs, as
data discretized on the coarser LES mesh are transferred in both
directions. The PIESRGAN simulation workflow was implemented
in CIAO for this work, which employs finite differences to solve
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the Navier-Stokes equations along with multi-physical effects and
chemistry and has been used for many DNS and LES studies in
recent years [6, 7, 9, 10, 16, 23].

To facilitate the reproducibility of this work and clarify more
technical details, a basic version of PIESRGAN is available on GitLab
(https://git.rwth-aachen.de/Mathis.Bode/PIESRGAN.git). Further-
more, PIESRGAN is available as software as a service (SaaS) in the
supercomputing environment at the Jülich Supercomputing Centre
as JUelich Large-Eddy Simulation (JuLES), which has just been
awarded as one winner of RWTH Aachen University’s Innovation
Award 2022.

3 RESULTS AND DISCUSSION
The accuracy is a key measurement for any newmodeling approach.
Therefore, it is discussed for three different applications in this sec-
tion: a decaying turbulence case, a turbulent premixed flame kernel
setup, and an interfacial temporal jet simulation. All simulations
were performed using world-leading HPC resources, consuming
altogether over 100 × 106 core-h. The discussion gives a priori, i. e.,
the model employed within one time step without feedback to the
simulation, and a posteriori, i. e., the continuous application of the
model to advance the simulation in time using the model results,
evaluation examples. While a good a priori performance is neces-
sary for a successful application as model, it is not sufficient. Even
small a priori errors can accumulate over time, finally blowing up a
simulation, especially in the context of DNS with less-dissipative
solvers. Therefore, a good a posteriori performance should always
be the target but is also significantly more difficult to achieve. For
the generic turbulence and the interfacial jet cases, nondimension-
alized quantities are shown, as usually done in literature, while the
combustion case presents dimensionalized quantities.

3.1 Decaying Turbulence
The decaying turbulence casewas computed using the solver psOpen,
which solves the incompressible Navier-Stokes equations formu-
lated in spectral space but with the non-linear term computed in
physical space. It uses the library P3DFFT for spatial decomposition
and to perform the fast Fourier transformation [43]. The simula-
tions for this test case were computed on JUQUEEN, employing
more than 1.8Million concurrent threads and costing more than
35 × 106 core-h [27]. Turbulence along with scalars are initialized
on a uniform grid with 40963 cells and an initial turbulence inten-
sity of 𝑢 ′20 = 2

3 ⟨𝑘⟩ with ⟨𝑘⟩ as ensemble-averaged turbulent kinetic
energy. Over time, the turbulent kinetic energy decays resulting in
larger turbulent structures. Four ensembles with statistically simi-
lar initial conditions were computed. The maximum Taylor-based
Reynoldsnumber is 88.

The decaying turbulence application is a very good baseline case,
as it features many different Reynolds numbers over time, which
is typical for many practical applications. Therefore, the decay,
typically evaluated using the ensemble-averaged turbulent kinetic
energy and the ensemble-averaged dissipation rate ⟨𝜀⟩, must be
correctly predicted by the model, even on a much coarser LES mesh.
The results presented in this paper for the decaying turbulence case
focus on the velocity prediction, and results for scalars are omitted.
However, the combustion cases discussed below focus on scalar

prediction. A uniform LES mesh of 643 was used for the decaying
turbulence case [13].

The energy spectrum is a very important measure for quantify-
ing the distribution of turbulent energy among the length scales.
The turbulent kinetic energy is produced on the large scales, trans-
ported in the inertial range, and dissipates on the small scales. Fig. 3
shows the dimensionless energy spectrum, denoted as S ∗, based
on all normalized velocity components, for the decaying turbulence
case. The spectrum is computed with the fully resolved velocity
data, the filtered velocity data, and the reconstructed velocity data,
and the wavenumber 𝜅 is normalized with the peak wavenumber
𝜅p of the initial energy spectrum. The filter removes the smallest
scales and the corresponding energy contribution. The task of the
model is to reconstruct these scales and add energy again. Over
the full range of scales, the accuracy of the reconstructed data is
very good. The accuracy of the energy spectrum is remarkable for
two reasons: First, the PIESRGAN model does not use any explicit
information about the shape of the energy spectrum nor performs
any kind of forcing in wavenumber space. However, the accuracy
in wavenumber space outperforms any other state-of-the-art turbu-
lence model. Second, the energy spectrum is crucial for the behavior
of turbulent flows and contains many important information about
physical processes, such as the transport of energy from the large
to the small scales. The high accuracy in wavenumber space is
therefore of utmost importance for evaluating the performance of
the PIESRGAN model for turbulence prediction.
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Figure 3: Dimensionless energy spectrum S ∗ plotted over
normalized wavenumber 𝜅/𝜅p and evaluated on fully re-
solved data, filtered data, and reconstructed data.

Fig. 4 shows the evolution of the ensemble-averaged turbulent
kinetic energy and ensemble-averaged dissipation rate over time,
evaluated based on the DNS ensemble data and with the PIESRGAN-
LES. The decay predicted by the PIESRGAN-LES is in good agree-
ment with the decay of the DNS data. Note, in particular, that the
dissipation rate would be significantly offwithout the sufilter model,
as dissipation occurs on the small scales which are not captured
by the filtered equations on the coarse mesh. As will be shown in
Sec. 3.2, the results are even good, if the turbulence is no longer
fully homogeneous. In cases with highly anisotropic turbulence, a
combination of homogeneous isotropic turbulence and boundary
layer turbulence can be used for training.
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Figure 4: Temporal evolution of the ensemble-averaged di-
mensionless turbulent kinetic energy ⟨𝑘∗⟩ and ensemble-
averaged dimensionless dissipation rate ⟨𝜀∗⟩.

The spatial reduction in simulation size to 643, i. e., by multiple
orders of magnitude, is remarkable. It emphasizes the universal
character of turbulence on the small scales. It is also significant in
terms of data storage, as it basically reduces drastically the size of
the information which needs to be stored - in addition to that of
the trained network, which is small. However, this large reduction
should be seen as a theoretical limit, as reductions to meshes about
10 to 20 times coarser per direction seem to be more robust for
more complex cases. Furthermore, reconstructing very large parts
is also very memory intensive, making a little bit finer meshes with
smaller parts to be reconstructed often more efficient. Note that for
flow simulations, the time step size is also coupled to the mesh size
via the CFL number. Therefore, an increase in spatial cell size allows
also more freedom with larger time steps, however, to accurately
reproduce the fully resolved data, a time step in-between the DNS
time step size and the theoretical new CFL limit was found to be
required and a time step size of about 50 % of the theoretical new
CFL limit was used here.

3.2 Turbulent Premixed Flame Kernel
The turbulent premixed flame kernel application focuses on the iso-
octane/air flame kernel setup under real engine conditions defined
in [20–22] with unity Lewis number, i. e., with the same diffusion
coefficient for all scalar species. It computes the evolution of an orig-
inally spherical flame kernel in a decaying homogeneous isotropic
turbulence field on a mesh with 9603 cells. The cases were com-
puted with the code CIAO on a staggered mesh [8]. The flame
kernels were computed in the low-Mach limit using the Curtiss-
Hirschfelder approximation [30] for diffusive scalar transport and
including the Soret effect. A reaction mechanism with 26 species
was used, increasing the computing cost significantly compared to a
nonreactive case, as a system of 26 coupled PDEs (cf. (1)) needs to be
solved. The cases were originally computed on SuperMUC, however
for the present work they were recomputed on the JURECA-DC
(Booster) module, as part of the PIESRGAN training process to
train on-the-fly. The cost for two realizations of the flame kernel
on JURECA-DC (Booster) were about 22 × 106 core-h.

The reaction progress variable 𝜁 is essential for analyzing such
premixed combustion cases. Reference [21] defined it as sum of the
mass fractions of H2, H2O, CO, and CO2 and introduced a simpli-
fied reaction progress variable behaving according to a transport
equation (cf. (1)) with the thermal diffusion coefficient as diffusion
coefficient and the sum of the source terms of the species used for
the definition of the reaction progress variable as chemical source
term. The temporal evaluation of one realization of the flame kernel
is visualized in the top row of Fig. 5. The initially spherical flame
kernel increases significantly in size and deforms. The surface is
strongly wrinkled. The training of PIESRGAN was performed with
multiple filter stencil widths varying from 5 to 15 cells [11]. Fur-
thermore, Fig. 5 presents reconstruction results for the simplified
reaction progress variable, two species mass fractions, and one
velocity component. The agreement between fully resolved and
reconstructed data is good. The filtered data are less sharp as they
feature less small-scale structures due to the filtering over 15 cells.

References [20, 22] pointed out that an accurate prediction of
the surface growth is a key for understanding cycle-to-cycle varia-
tions (CCVs) with respect to the global heat release in such flame
kernel setups. The surface growth is a highly coupled quantity and
very difficult to predictively estimate with reduced order models.
The a posteriori prediction of the surface density is therefore a
perfect metric for evaluating the PIESRGAN-LES prediction quality.
The evolution of the flame surface density Σ is shown in Fig. 6
The ensemble-averaged turbulent kinetic energy in the unburnt
mixture is given in Fig. 7. To further demonstrate the training
and execution processes of PIESRGAN, flame surface densities of
three different flame kernels are given, two flame kernels that were
used for training and one flame kernel that was used for testing.
CCVs among the different runs can be seen, making the accurate
prediction of the target flame kernel remarkable. Note that training
data are not shown for the turbulent kinetic energy, as all kernel
variations used the same initial turbulence field with only different
flame kernel start locations. Overall, the agreement between DNS
data and PIESRGAN-LES data is good, emphasizing the potential
of the introduced PIESRGAN-subfilter modeling approach.

3.3 Interfacial Jet
Reduced order models of interface formation are another important
challenge for industrially relevant flows. DNSs of a temporal jet
configuration were used to study modeling of interface-driven ef-
fects in two-phase flows (cf. Fig. 1) in this work. All jets have a bulk
Reynolds number of 5000 and a viscosity ratio of 40. The Weber
number, i. e., a measure of the relative importance of the fluid’s in-
ertia compared to its surface tension, and the density ratio vary by
a factor of 20 between realizations in order to study the sensitivity
of the interface with respect to these parameters. As larger Weber
numbers require higher spatial resolution, up to about eight billion
cells were used for the largest DNS. All DNSs were performed using
CIAO along with a 3-D unsplit coupled level set/volume of fluid
(3DU-CLSVOF) scheme considering surface tension [25, 38] and a
second-order accurate, monotonicity preserving Lagrange-remap
solver [39]. Due to the infinitesimally small geometric features dur-
ing interface formation, corresponding interface simulations are
typically mesh dependent and require very fine meshes. This mesh
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Figure 5: Visualization of one turbulent premixed flame ker-
nel realization. The first row shows the temporal evaluation
of the simplified progress variable 𝜁 at 0.06ms, 0.21ms, and
0.36ms. All other figures show a zoomed view of the fully
resolved data, filtered data, and reconstructed data for the
simplified reaction progress variable 𝜁 , the C8H18 mass frac-
tion, 𝑌C8H18, the OHmass fraction, 𝑌OH, and a velocity com-
ponent 𝑢 employing PIESRGAN at 0.36ms. Colormaps span
from blue (minimum) to yellow (maximum).

dependency is significantly reduced by employing the PIESRGAN
modeling approach.

PIESRGAN reconstruction was used on the volume of fluid (VoF)
field. After reconstruction, surface tension forces are enforced. Thus,
the numerical scheme benefits twice from the data-driven recon-
struction. First, the interface reconstruction/remapping step results
in a more accurate representation of the interface. Second, the size
of the surface tension, which depends on the geometrical features
of the interface, can be more accurately evaluated. As physically
informed contribution to the loss function, the interface jump con-
ditions were enforced along with the continuity term reading

𝐿physics = 𝛽41𝐿mass + 𝛽42𝐿jump . (6)

The a priori test uses data at one time step, filters the data, and
reconstructs the data with PIESRGAN. The filtered mesh, which
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Figure 6: Evolution of the ensemble-averaged turbulent ki-
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Σ over time 𝑡 .
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was chosen, used half of the cells per direction compared to the
DNS mesh. The results are shown in Fig. 8. The visual agreement
is very good.

The droplet, which is formed and already visible in the a priori
visualization, is tracked over time with DNS and LES with a coarser
mesh for an a posteriori test. The result is shown in Fig. 9. Again,
the visual agreement is very good. Without model, the breakup on
the coarser mesh would be slower.

4 CONCLUSIONS
The presented results show that PIESRGAN is able to accurately
model various configurations run on current supercomputers and to
significantly accelerate complex simulation workflows. The simple
decaying turbulence case was run with only 201 × 103 core-h, and
also the more complex simulations were accelerated significantly.
The speedup could be used to create large ensembles very efficiently,
e. g., to quantify CCVs. Projecting the current development of GPU
performance, it is expected that the cost for PIESRGAN will further
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Figure 8: A priori results for the VoF field shown for DNS and
reconstructed data.

DNS

PIESRGAN

Figure 9: A prosteriori results for the VoF field shown for
DNS and LES.

decrease, making this approach even more promising. As demon-
strated, the same architecture can be used to systematically develop
reduced order models for multi-physics flows by only choosing an
appropriate physics-informed loss function term.

The presented coreh-to-solution comparisons between DNS and
PIESRGAN-LES are obviously only one important metric. Com-
parisons between PIESRGAN-LES and classical LES, such as the
dynamic Smagorinsky model [47], are also interesting but more
difficult to pursue. The PIESRGAN-LES presented in this paper is
highly optimized, and thus comparisons with classical LES without
this degree of case-specific optimization may be biased towards the
PIESRGAN-LES results. On the other hand, using the same meshes
for PIESRGAN-LES and classical LES is biased towards classical
LES, as PIESRGAN-LES is more robust to underresolved flow situa-
tions [13], but accuracy measurements are also often non-trivial.
Finally, there are many cases where classical LES is not able to
achieve acceptable results at all. In general, studies have shown
that PIESRGAN LES are significantly more expensive per time step
than classical LES on similar meshes. Since they require less resolu-
tion to achieve the same accuracy, mesh resolution can be used to
reduce this cost overhead. Moreover, PIESRGAN-LES can reproduce
DNS quantities with high accuracy at significantly lower cost than
DNS, which are not predictable at all with classical LES models.
This is a strong advantage depending on the target case.

Besides the accuracy and speedup, the PIESRGAN-subfilter ap-
proach features additional advantages in the context of recent su-
percomputers. First, most world-leading supercomputers gain most
of their performance from their GPUs. The focus on GPUs com-
pared to CPUs allowed to setup the world’s first Exascale machines
but this development is also very critical for applications which are
difficult to port to GPUs. Flow simulations with their typical sten-
cil sizes are among those critical simulations, which significantly
limits their performance on the newest generation of supercom-
puter setups. PIESRGAN could be a workaround as it smoothly runs
on GPUs and basically shifts CPU-cost to GPUs by reducing the
cells computed on the LES mesh and adding extra cost during the
reconstruction. Second, current supercomputer workflows often
require data-centric approaches, as moving data is more expensive
than computing data. PIESRGAN reduces the amount of moved
data for the cost of additional computing operations, which can be
advantageous. It can be also used as coupler in the context of mod-
ular supercomputing, reducing the amount of data shifted between
multiple clusters significantly without lacking accuracy. Finally,
PIESRGAN-LES significantly reduces the amount of I/O, due to
much smaller size of the filtered mesh. As I/O often accounts for
about 10 % of computing cost in simulations, this is a non-negligible
advantage.

The turbulence, turbulent combustion, and interface application
cases presented in this work were carefully chosen examples to
showcase the modeling performance of AI-based super-resolution
in fluid dynamics and emphasize its HPC potential.
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